UNIVERSITY OF THE AEGEAN

SCHOOL OF BUSINESS

DEPARTMENT OF FINANCIAL AND MANAGEMENT ENGINEERING

« A Class of Single Vehicle Routing Problems with Predefined Customer Sequence and
Depot Returns »

Ph.D Dissertation

Antonios Tatarakis

Supervisor: Ioannis Minis

December 2007

CHIOS



« A Class of Single Vehicle Routing Problems with Predefined Customer Sequence and
Depot Returns »

Ph.D Dissertation

Antonios Tatarakis

Supervisor: Ioannis Minis

December 2007

CHIOS



University of the Aegean Department of Financial and Management Engineering

Acknowledgements

During the time of research for this doctoral, I had the opportunity to cooperate with a number of people,
each one of which assisted me in achieving this optimum goal. I therefore feel the need to acknowledge their

contribution in the following lines.

I would like to start with my supervisor, Professor loannis Minis, for providing an unlimited source of
information and advice, on both a scientific as well as a personal level, throughout the duration of my
research time. His help, vision and solid scientific background, lead the way and catapulted this piece of

research on a completely different level.

A special thank you to my colleagues Vassilios Zeimpekis from ELTRUN-WRC, Kostis Mammasis and
Polybios Tsiribas from the Department of Financial Management Engineering at the University of the
Aegean, for being there so that I could share my thoughts and for their advice and assistance at various

phases of the project.
My final acknowledgement goes to my family, and especially to my wife, Mariza Balaska, for the continual
moral support she provided throughout the duration of this work, for being the person she is, simply for

being there.

Thank you

III




University of the Aegean Department of Financial and Management Engineering

Extevng Ilepidnyn

Ymv moapovca dwTpPn peretnoope po Pactky] wepinTmon Tov TPOPANUATOS OPOUOAOYNONG OYNUATOV
(Vehicle Routing Problem - VRP), otnv omoia éva dynuo Eekva amd v amodnkn ko eEumnpetel meldteg
ne mpokaboplouévy oelpa ETIoKEYNS, EMOTPEPOVTAG OTNV AmOONKY Yo EMAVAPOPT®ST OTAV OVTO KPIvETOL
oKOmo. Z1dY0¢ tvar 1 eEumnpétnon OA®V TOV TEANTMV Kol 1] EAA(LOTOTTOINGN NG Olavvbeicag andotaong
(k00T0VG). To CLYKEKPIEVO TPOPANU ExEL PHEYAAD TTPUKTIKO EVOLOPEPOV, LE EVOEIKTIKES EPUPUOYES TOV
nepthappavoov v mepintoon moincewv Ex-Van, kabohg kot cvomiuoto dtakiviong vAkov. IIévie
TEPUMTMOELS TOV TOPATAV® TPOPANUATOS, HE OLEAVOUEVT] TOAVTAOKOTNTO, TPOTEIVOVTOL, OVOADOVTOL KOl

emAvovtal. Avtég gtvot:

e Alavoun TOAOTAGV TOTTOV TPOiovVIOV pe yvooty| (deterministic) {Rmon medatdv. MehetnOnkav 600
VRO-TEPIMTOGELS: ) KAOE TOMOG MPoidvTog PLAACOETOL GE €101KO AMOONKELTIKO YDPO OYNUOTOG HE

npokabopiopévn yopntikdtnto Kot ) Aot o1 TOTTOL TPOidVTOV amobnkevoviol 6e Eva (Eviaio) ymdpPo.

e Awavopr| TOAATAGV TOT®V TPOiOVIOV e 6ToYaoTIKN (stochastic) {fjtnon medatmv. MeketnOnkav Kot ot
VO VIOTEPUTTOCELS TOV ALVOPEPOVTOL TOPATAV®. ZOUGOVO LE VTN TNV TEPImT®On, 1 {nnomn Tov Kabe
TeEAATN OEV €lval YVOOTH €K TOV TPOTEP®V, OAAA AmOKOAOTTETOL UOAIS TO OYNMUO ETIOKEPTEL TOV
ovykeKplEVo eddtn. To cuykekpyévo TpoPAnpa ivar onuavTikd o cuvOeTo. TNV TEPIMTMOON OV N
{nom tov eAdn oev umopet va KaAveBel TANpwS, T0 oYU Bo EELTNPETNOEL TOV TEAATN UEPIKDG, Ol
EMOTPEYEL OTNV ATOONKN Yo ETOVAPOPTOOT, Kol o emavEAOEL GTOV TEAATN DGTE VO IKOVOTOINGEL KO

™V gvomopévovsa {Ttnon Tov.

o Tloporapn kot dtavoun (tpoidviwv) pe otoyxaotiky| (stochastic) {jitnomn mehatdv. Xe o0t TNV TEPIMTMOON)
TO oMU Ol LOVO TTapadidel TPOTOVTA GTOVG TEAATES, OAAL KOt TOPAAAUPAVEL ETOTPOPEG GO AVTOVGS
(m.y. xoteoTpappéva N doeteg maréteg 11 VAMKE cvokevaciag). H (itnom tov kédbe medldtn yio dtavoun M
wapoAafn dev eivol yvooTn €K TOV TPOTEPMV, OAAL ATOKUAVTTETOL POAG TO OYNUO ETIOKEPTEL TOV
ovykekplpévo mehdtn. Emnpdcbeta, oe kdbe emotpopr| oty amodnkn, Oa npénet va anopacicbel ndéco
andBepa Bo popT®Bel 6TO POPTNYO, MOTE VO TAPAUEIVEL OPKETOG AOELOG YDPOG YO TNV TAPUALPN) TV

EMOTPEPOUEVOV TPOIOVIMV OO TOVG EMOUEVOVS TEANTEC,

v
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Onmwg avagépbnie Kot TpoNyoLHEVMG, Ol TEVTIE TOPATAVE® TEPMTMOOELS TOPOVCIALOVY 1O0UTEPT) TPAKTIKY|
afla oto Logistics (m.y. moinoelg Ex-van) kou og cvomiuato dwokivnong vAwkov (material handling
systems). Xtnv npmtn mepintoon (mwAnoeslg Ex-van) éva oynuo emokénteton oe po Bapdta Evav aptBuod
TEATOV, e Tpokaboplopévn oelpd emiokeyng kol otoyxaotikny {NTnom. KOmoc Tov OYNUOTOS &ival vo
e&ummpetmost TANpoS TV {TNon OA®V TOV TEAATOV, TNPOVTAG TNV CEPE EMIOKEYNS KOl ETGTPEPOVTOG
oV amodNKn ywo EMavaPOPT®ON OTOTE VTd KpiveTor okompo. H dedtepn mepintwon (material handling
systems) Ppiokel EQApLOYN GE CLGTHLOTO TAPAYWOYNG HE TPOKAOOPIOUEVOLS SLAOPOLOVG Y10 AVTOKIVOVUEVHL
oynuata (automatic guided vehicles — AGVs). H {qtmom 1tov «déBe otabpod epyaciog pmopel va eivan
YVOOTH €K TV TPotépmv (cvotnuata mapaymyns push — make to stock) 1 otoyaotikn (cvotipota
napoyoyng pull — just in time). Kot mdAl, oxondg tov oynuotog AGV eivar va eEumnpetnoel TAnpog v
Mon OAwv TV oTabumv epyaciog, (TNPOVTOG TNV GEPA EXICKEYNG) Kol EXIGTPEPOVTOS GTNV amodnKn Yo

EMOVOPOPTMOT TPATOV VADV OTOTE OVTO KPIVETOL GKOTILO.

Y10 Kepdaiato 2 g dwatpipng mapovoidlovpe onpoavtikd aroterécpata g Pipitoypapiog mov oyetilovral
pe to vd Oepedivnon mpoPAnuata. Apykd ovoivetor to TPOPANUa dpopordynong oynudtov (Vehicle
Routing Problem - VRP). Zvykekpiéva, mopovctalovtol ot €NEKTAGES TOL TPOPANUATOC OVTOD LE
npokabopiopévn yopntikotra (Capacitated VRP), pe mollamiés mapaddcelg avd meadtn (Split Delivery
VRP), pe drovopun ko maparafn (Pickup and Delivery VRP) ko pe otoyaotikr) {ftnon (Stochastic VRP). H
dovAeld tov Yang et al. (2000) amotédece Eumvevon yio v moapovoa dwtpiPr. O Yang ef al. diepgvvnoav
10 otoyaotikd VRP (SVRP) pe éva M mepiocdtepa oynuata, Kot Tpokabopiopévn oelpd eniokeyne. e
avtifeon pe v cvvnOiopévn Tpoktikn e PipAoypagiog cOUE®VA HE TNV OTTOlo OTAV TO OYNU OV EXEL
mAéov apketd amdbepo Yoo vo eEUMNPETNOEL TOVG EMOUEVOLS TEAATEG EMOTPEPEL OTNV amobnKn Yo
avamAnpwon (recourse action) ot Yang et al. mpoteivouv pio moAtikn BEATIOTNG avomAnpmons arofépatog
1 OToio. EVOOUATMOVETOL GTNV aP)IKT OpopoAdYNon tov oxnuatog (proactive). ITo cvykekpyéva, ta onpeio
AVOTANPOOTG amOBEUNTOS EVOOUATMVOVIOL CKOTIU®MG OTNV SdPOL] TOV OYNUATOS, Mote 1 mbavotta
amotuylag TG Stdpopuns, oAAd kol To KOGTOG TOL QLT 1 amotvyio emMEEPEL, va givor pelmBel, ko to

GUVOAKO OVOUEVOUEVO KOGTOG TNG S0 POUNG VO ElaryloToTotn et

Téhog, 6T0 KEQPAAOMO 0VTO, £VTOMILOVUE T TEdIML YO TEPUITEP® EPEVVA GTI GLYKEKPLUEV TEPLOYN, KoL

opifovpe ta TpoPfAnpato e mapovoag dSTpPnc, eENydvTag TV Be@pPNTIKT 0ALL Kol TPAKTIKY| a&io auTdV.




University of the Aegean Department of Financial and Management Engineering

To Hpopinpa Apopordynong pe Emotpoeéic otnv Amrodnkn (VRDRP)

Y10 kePAAao avtd mopovcoialovpe v Pactkn poper| tov [poPfAnuatog Apopordynong pe Emotpopég
omv Amofnkn (VRDRP) pe yvoom ek tov mpotépov (vieteppuviotikny) {ftnon. Zkomdg avutold Tov
TpoPAnpatog gival n gloyiotomoinon Tov k66Tovg (amdSTAoNS) Kot 1 TaVTOYXpovn eEumNpETnorn OA®mV TV
etV e Tpokabopiopévn celpd emiokeyng Kot £va oynua. H avtikeyevikn ocuvaptnon tov tpofAnpatog
elvar n akdAovOn:

n-l1 n-1 n
Min E = zci,i+1xi,i+l + Zcioxi0+ ZCOIxOI (I1-1)

i=0 i=1 i=2

OOV Cijr; Ol OMOCTAGES UETAED TMV TEAUTMV, Cip HETOEL TMEAOTMOV KOl Omobnkng, Ko Xiir , Xjp Ol
ouvteleotég mov opilovv av éva ocvykekpluévo TOEo eivor pépog g dwdpouns. EmmpocBitwmg,
epapuolovtol TEPLOPIGUOL SIKTVOV Kot YOPNTIKOTNTAG TOV OYNUATOG MOTE TO TPOPANUA VO TPOGEYYIGEL TNV
npaypoatikotnta. H mpotetvopevn pébodog emidvong Paciletanr oe Avvapikd Ipoypappaticpd Kow og mnyn
éumvevong Mrav m onuoocicvon twv Yang et al. (2000). Zvykekpyévo, ol €EIGMOGELS OLVOUIKOD

TPOYPOULATIGUOD TTOV TPOTEIVOVTOL Eivar 01 aKOAOVOEG:

I'a k=n:

Viu(z) = Xno Ko z=0,1... Q-d, (I1-2)

I'a k=n-1:

Vn—l(Z) = Xp-1,n + Vn(Z) ovz > dn (H-3)
= Xp-1,0 T Xon T Vn(Z) ovz<d, (H—4)

IN'ok=n-2...1:

Vi(z) = Xko+ Xok+1 T Vi1 (Q-di+1) av z < dis (I1-5)
= min { X0 + Xo+1 + Vier1(Q-die1), Xikr1 T Vir1(z-dis1) } av z > dis (I1-6)

omov Vi(z), k =n, n-1... 1 ko z = 0... Q-dj, N LG0T OMOGTOGN OO TOV TTEAATN k, amd TOV Omoio TO
oymua avaympet pe amdbepa ico pe z, péyxpt to t€A0g TG oadpouns. Ot mapomdve e§lomaelg Abvovv 1o

TpOPANHa otadiakd, Eekivavtog and tov tehevtaio meAdT, cOpemva pe v pebodoroyia Tov dvvapkon

VI
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npoypappatiopod. Xe kae Pua (oamd k= n-2...1), 1o mpdypappa vroroyilel 600 TIEG, TV TN OV TO
oymupa kotevbouviel amevbeiog otov emdpevo TTEAATN KOl aVT €6V TAEL GTOV EMOUEVO TEAATY HECH TNG
amofnNKNG, Kot EMAEYEL QLTI TOL TOPEYEL TO EAAYLOTO KOGTOG OO TO CLYKEKPIUEVO Prpa LéYpL To TEA0G TG

SO PO UNG.

H Aemtopepng avddlvon tov mpofAnpatog £5e1&e 0TL | TOALTAOKOTNTA TOL avEAvEL ekBeTIKG pe To TANB0G
tov telatov. EmmnpocHitwc, o apBpoc tov emotpo@dv oty anonikn yio avorAnpwon anofépoatog oty
BEATIOTN AVON Gpesr EIVAL TIC TEPIOTOTEPEG POPES UETAED TOV Cmin < Chest < Emin+2 OMOV in EVOL O EAAYIGTOC
EPIKTOC aplOUdg eMoTpoP®V otV amodnkmn. O adydpiOrog SuVaKOD TPOYPOUUUOTIGHOV aodelydnKe moAD
YPNYOPOG GTNV €miAvon HeyGAwV TpoPfAnuatov O0nme Ntav avapevopevo. o mapdostypa, TpofAquota pe
100 meddteg emAvbnkoav oxedov otiypoio, kot mpoPAnuata pe 1000 meddteg emAvOnkav oe 0.3

devTePOLETTA, OE VITOAOYLOTY pe yopaktnplotikd Intel Pentium IV, 1.6 GHz CPU, 1Gb RAM.

Mopairayéc Tov Mpopiqpatog VRDRP

210 keParato 4 diepevvnoape: (i) TNV TEPITTOOT SLAVOUNG TOAALATADY TOTMV TPOIOVI®V GTNV 0noio 0 KAOE
TOTMOG TTPOIOVTOG amofnKevETOL GE JOPOPETIKO amonkevTikd YDOPo o610 Oynua, kot (i) v mepintwon
VOIS TOAAOTAMY TOTOV TPOIOVT®V GTNV omoiol OAa Ta TPoidvTo amodnkebovtol 6e Evov amodnKevTIKO

ADPO.

Kot ta 600 mpoPAnuoato  emAvOnkav pe KATOAANAEG €mEKTAGES TOL  OAyopiBuov  dvvopKoD
TPOYPOUUATIGUOD TTOV ToPoLGLAoTNKE Tapandve. H eicmon duvapukod Tpoypoppaticpod yor v TpoTn

nepintmon £xel ©¢ €ENG:

Cio +Coim1 Vi (Q1 —dy i1y, Ox —dg i), if Fjell, K}z, <d; .,
I/i(zl""’ZK)z (H_7)
min{c;y +¢o 1 + Vi1 (O = dy 415+, Ok —dg i01)s

Comn HVin (2 =dy sz —di )}y it Vje{l,...,K}:z,>d

Jeitl®

VII
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omov d;; (j=1,...K) m {ntnon ywa to mtpoidv j and tov merd i, Vi (z,,...,z,),i =1,...,n, 10 EAAYI10TO KOGTOG
amo Tov TEAQTN i PHEXPL TO TEAOG TNG SLOPOUNG, €6V 0 TeEAdTNG i £xel e§umnpetnOel kKau To amdBepa Tov Exet

omopeivel 6To Oynpa o o tpoiov j,1< j< K, givon z, €4{0,...,0, —d ;}.

H dgutepn mepinmtoorn xotd v omoio OAc to. mpoidvia omobnkevoviar oe €vav amodnKevTikd YOPo
eMAVONKE KOl QLT PE OLVOIKO TPOYPAUUATIONO. To TPOPANUA apy K HETOCYNUOTIOTNKE GTO AVTIGTOL(O
VRRDP, afpoilovtag v {non ywo to kb mpoidv og kabe meAdtn ®ote 1 GuvoAkn {Tnon tov meAdt
Vo ovomoploTaTot amd Eva voopepo. I v exilvon tov mpoPAnpatog xpnoiponombnke o akydpOpog mov
napovctdotnke otnv Evotnra 3.4 avtig g datpiPng, o onoiog oyedidotnke yia v eniAvon tov VRRDP
pe éva mpoidv. O alydpiBpog owtdg vroroyilel v S10dpoun TOL OXNUOTOS KOL LUE UL LETOTPOTN GE QVTOV
vroloyifovtal kot ot BEATIOTEG TOGOTNTEG TOL TPEMEL VO, POPT®OOVLV 61O OYNLL, 6 KAOE TOL €moTPOEN
otV amofnkmn. Avtd yivetor pe Tov GLVOLOGUO TNG YVAOONG TNG ETUEPOVG {NTNONG OVA TPOTOV AV TEAGTN
(amd Ta apyikd dedopéva Tov TPOPANHOTOS), Kol TG PEATIOTNG dadpouns mov Ba. akoAovBNGeL To Oy
(Tov &xel vmoloyiotel amd tov adyopBpo). I'vopiloviag dvo dadoykég EMOTPOPEG otV amobfkn péoa
oTNV OOPOUN, UTOPEl VO VTTOAOYIGTEL TO POPTIO TOV TPEMEL VO UETAPEPEL TO OYNUOL VIO VO IKOVOTOUGEL

TAMNpog TV {NTNnon Tov Kabe meAdtn Yo kGO TPoiov.

To xe@AAol0 OAOKANPOVETOL HE TNV aVOALON NG OTOO0ONG T®V TPOTEWVOUEVOV HeBOGOV AVOTG.

Yvykekpéva emAvdnkav 3000 mpoPAnuoata yuwo v mpodty Ko 2000 mwpofAnuota yioo v dgVTEPN

nepintmon.

1000 7
2 100
z
g
E 10 / =——2 Products
g 14 ——3 Products
.§ 4 Products
S /
E 01 —
£
(=]
@) 0.01 ~

5 10 15 20 25 30 35 40 45 50
Number of Customers

Yyqpa I1.1. Ot vroroyiotikol xpOvoL TG TPMTNG TEPITTWOTNC.

VIII
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Zyfpa I1.2. Ot vroroyiotikoi xpdvot tng de0TepNS TEPITTMONG.

Bdoel tov anotedecpdtov avutdv, dgiope 0Tt 11 TOAVTAOKOTNTA TOV TPOPANUATOS SLOVOUNG TOAAATADY
TPOTOVI®V TNV omoio 0 KAOe THTOG TPOIOVTOG AmOONKEVETAL GE OLOPOPETIKO ATOONKELTIKO YDPO GTO OGN
elvatl onuoavtikd peyoddtepn amd avtr| Tov TPOPANUATOS S0VOUNG TOAAATADY TPOTOVT®V 6TV omoin GAOL Ot

TOTOL TPOiIOVTOC arodnKevoVTaAL GE £vaV AmToONKELTIKO YDPO (YVOMV POoPTiO).

To Xtoyactiké IpoPfinpa Apopordynong pe Emotpopéic otnv Anodnkn (SVRDRP)

Y10 Kepdaio 5 avarvovpe v otoyaotikny ékdoon tov [IpofAnpatoc Apopordynong pe Emotpopés otnv
Amobnkn (SVRDRP). Ze avtd 1o mpofAinua n {on tov meAatdv HovieAonoleitol og aveEdptntn Toyaio
HeTaANT HE YVOOTEG OTATIOTIKEG TAPAUETPOLS (Bdoetl totopikng {Rong). Xkomdg Tov ke@aiaiov givor 1
avaALGT TOL TPOPANUATOG OGO APOPA GTIG CTOUTIOTIKES TaPAUETPOLS TG (nnong. H e&lowon duvapkov

TPOYPOUUATICHOD Y10 TO 6ToY0oTikdO VRDRP cdppmva pe toug Yang et al. (2000) dideton mopokdato:

.
Cij+1+ ij-H (Z—fk)l?jﬂ,k + Z[ch+1,0 +fin(z +Q—§k)]1?j+1,k

k& <z ki&f >z

Jiz) =min < (I1-8)

m
. . k
| ot ety f0-¢ )p_,-+1,k}
k=1

IX
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omov fj(z) 10 eMdy16TO KOGTOG amd TOV MEAATN j HEYPL TO TENOG TNG dadpoung, €4v to amdbepo mov £xet
amopeivel 6To OyMnua HETA TNV e&umnpétnon Tov meEAdT j €ival z Kot 1 otoyaotiky] {ntnon tov mehdrn j+7

glvar &% . Emmpocbeta, Q M yopnTikdTnTo. TOL OYNHOTOG KOl pjss 4 | TOAVOTNTO VO £XEL 0 TEAGTNG j+] TV

{inon &-.

Apywcd, to TpdPANUa ovaAlvnke MOTE VO EVIOTIGOLUE TNV €Midpacn S dakvpavens g {ftnong tov
TEAUTMOV GTO OVOUEVOUEVO EAYIOTO KOOTOG TNG dtadpouns. H avdivon katadeuvoel 0Tl TO avapeEVOLEVO
eMdyloto KO6GTOG NG Oadpoung av&dvel oyeddv ypappkd pe v dtakvpaven s nmong. ‘Etol, oty
nepintwon tov Ex-van, n ovvéneio tov noiicewv ennpedlel dueca 1o k66tog dtovouns. Emmpoctétwg to
TpoPAnpa avarlvdnke pe okond va kabopiotel n oyéon petald tov pEGov dpov ¢ {NTNoNg TV TEAUTOV
Kot NG Otakvpoveng g {ITnons. 1o GLYKEKPLUEVO TOPAOELYLOL TOV TOPOVGSLALETAL, 1| TOCOGTIONN OVENCT
TOV EAIYLOTOV AVOUEVOUEVOV KOGTOVS NG dtadpoung (11.6%) yio tnv mepintmon pe tov xapnAd péco 6po
Mong etvan pukpdtepn omd v avtictoyn nocootiaio avénon (16.7%) yio v nepintwon pe Tov VYNAO
HEGO OPO. ZVUTEPACUOATIKE, 1 TUYOOTNTA EMNPEALEL TO OVOUEVOUEVO EAYIOTO KOGTOG TNG OLOPOUNG

TEPLGGOTEPO GE OYNMOTO LUKPNG XOPNTIKOTNTOC.

Enrekraceis tov mpopinpoatoc SVRDRP

Y10 Kepdhawo 6 enekteivovpe 10 Ztoyaotikd IIpoPinuo Apopoidynong pe Emotpoeés otnv Amobnkn
(SVRDRP) yia va gmAvcovpe v mepintwon dtavoung toAloniomv mpoidviov. Onmg kot oto Kepdiao 4
depevvnOnkav 600 TepuTOSELS: (1) N TEPITTOON SLOVOUNG TOAAUTADY TOTWV TPOIOVTOV GTNV 0Toia 0 KAOE
TOMOG TPOTOVTOS amodnkeveTOl GE SAPOPETIKO amodnKeELTIKO YDpo ©TO OYMua, kot (i) M mEPIMTOON
VOIS TOALOTAGDV TOTOV TPOIOVT®MV 6TV omoia OAo Ta TPoidvta amodnkeboviol o eviaio amodnKeLTIKO
YDPO. XTO KEPALOLO OVTO TOPOVGLALOVUE TA XOPAKTNPIOTIKAE TOV KAOe TpoPAnpatoc, véeg pebBodovg yio Tov
VTOAOYIGUO TOV EAGYLGTOV OVOUEVOUEVOL KOGTOVG, Kot Be@pnTiKd amoTEAECHOTE TAL OOl LOG EMTPETOVY

TOV TPOGOIOPIGUO TNG BEATIGTNG OMOPACNG OPOLOAOYNONG LETE TNV £EVANPETNON TOL KAOE TEAATN.

Ocov apopd Vv mpdtn mepintmon, N €E0MON SLVOUIKOD TPOYPUUUATIGHOL Yot 000 Tpoidvto glvar 1

aKoAovON:
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k k 1 2
[t 2 2 LG m Pl P, T

k&M <z ky 82 <z,

* Z Z [2cj+1,0 + Sz + 0 - £k ,Qz)]P}ﬂ,k, P?+1,kz +

kpEM>z ke <z,

AN 2
* Z Z [26j+1,0 + (@152 + 0y =& )].Oj+1,k1 Pig, t

k&N <z ky i8R > 2,

fj(z1,2z2) =min

A

DI [2C.i+1,0 L@+ 0 =z + 0y — &8 )1”}'+1,k, Plat, (I1-9)

k&M >z ki8R >z,

m m,

k kyy ol 2
€0 +cO,j+1+Z ij+1(Q1—§ L O =8Pk Pk,

k=1 k=1

Omov f(z;, z3) 10 EAYLOTO KOGTOG OO TOV TEAATN j LEYPL TO TELOG TNG dadpoung, EGv o amdbepa mov £xet
omopEivel 6To dyMUOL Efvar (z1,2,) Kot 1 oTOYXAGTIKY {RTNom Tov medd j+1 sivan (&5, &%) . Emmpdobeta,

Q1 ko Qy M YWPNTIKOTNTA TOV KEOE 0mTOONKEVTIKOD XDPOV TOV OYAUOTOC, KoL (p

2 r
ek D) OL mOoVOTNTEG

v, £xetl 0 TedTNG j+1 ™V avtictoym {ynon (£, k).

EmmAéov amodeiybnke ot yio kébe meddtn vdpyetl po. cuvaptnon Kpicywmv onueiov, n omoia dtoywpilet
Vo TEPLOYES GTOV YDPOo TBavOV Qoptiov petd v e&umnpéon tov mehdtn: Tnv meployn cLVOLAGU®V
QOpTi®V Y100 TOVG 0ToioVg 1 BEATIOTN amOPacn (LeTd TV eEVINPETNOT TOL TEAATN) £Vl VO ETIGTPEYEL TO
Oynua otV amodnKn, Kot TNV TEPLOYN Yia TNV omoia 1 BEATIOT amdeacn eival To OYMUa Vo GLVEYIGEL GTOV

enopevo meddn. To amotéleoua avtd Pacileton 6T0 akdAovBo Bedprpo:
OEQPHMA 1: I'ia kaOe melary j, vmdpyer po oovéptinon kpiowy onueioy h; (z) .2y = ¢;, TETOIO WOTE 1]

Pértiotny amopaoy, uetd v minpn eCOTNPETNON TOV TEAGTH j €Ival Vo TPOYWPHOEL TO OYHUG. TTOV ETOUEVO

medatn j1 eav h;(z1,2,) 2 ¢; 0dhicdg va ematpeyer oty amobiKn.

H cvvaptnon #; (z) .2y )= ¢; OMOTLTMVETOL YPOPIKG 6T0 TopaKkdt® Xynuo I1-3.
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Yympao I1-3. Tpoeikn avorapdoTtacn g cuvaptnong opiov.
H anddeién tov mapondve Bewpnpotog otnpiletor 6to yeyovag 0Tl 10 TPp®dTO PEPOG NG €EIGMONS OLVOLKOD

TPOYPOUUATIGHOD EIvOl LOVOTOVE LELOVUEVT] KOt TO deVTEPO LEPOS TG e&lomong eivarl otabepd, aveEdptnn

TOL POPTIOL (z1,z,). Etot ot dvo O6pot g e&icwong téuvovtor 6 pa ypapun mov opilel v cvvéptnon

h; (z1 12y )= ¢;, Omwg eaivetal oto Zynpa I1-3.

Mo v anddeén g povotovikdtTag Tov TPdTov dpov ¢ E&icwong (I1-9), ypnoponoteitol To akdlovbo

MUUO, TO 01010 OVOTTOGGETOL Ko arodgkvoetol otnv Evomnta 6.2.2.:
AHMMA 1: Jiz1, 22) < fi(Q1, Q)+ 2cop  yrakabezy, zr € S;

Ocov apopd v devtepn mepimtmon, otnv omoic OAOL ol TUTOlL TPoidvtog amobnkedovionw ce Evav

amofnkevTiKo Ydpo N e€icmon Suva Kol TPOYPAULOTIGHOD Eivar 1) akdAovON::

fj(Zl’ZZ):min
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Cij+t Z ij+1(21—§k‘,zz—égkz)Pj+1(k1,k2)+

k&M <z, kyE*2<z,

+ Z Z {2c1+10+ klmi£10<ij+1(9—(§ k‘—Z1),Q—9)}Pj+1(k1»k2)+

iz <& kR <z, TaRUs

D [201+10+ sznige<Qf,~+l<e,Q—e—<f"z—zy)}pﬁl(kl,km

k:&M<z, kyiz,<&ER2

+ Z D> | 2e0+ min fjﬂ(e—(g”‘l—zl),Q—e—@"‘z—zﬂ)}p_,-ﬂ(kl,kz)

kiz<ER kyiz,<ER &N =2,2020~(¢ -

€jotcCo, 41t
D DS 0-E50-0-E%)p (hkoy) +
ggklsg é:kng_g

. Z Z |:2CJ+10 o H;i<n€<ij+l(S_(§kl —9),Q—S)}Pj+1(k1’k2)+
02020 9«:*' £<0-0 <5<
£+ {% jot  min o fids,0-s—[ER —(Q—H)]}}p joi(ky k)

g g-0<£n 0<5<20-0-¢ (I1-10)

Omov fi(z;, z;) 10 EMAYLGTO KOGTOG OO TOV TEAATN j UEXPL TO TELOG TNG Sradpoung, ebv To amdOepa mov £xel

omopEivel 6To dynua eivat (z;,z,) Kal 1 6ToXoTIKY {iTnon tov meddt j+1 sivar (&5, &5 ). Emnpocbeta, Q

N XOPNTIKOTNTO TOV OYNHOTOG, KOL p 14 (ky,ky) M mBavoTnTo va €xel o mehdng j+1 mv Chmon (& ki gk,

Avrtiotoro, yoo TV mEPItTOON OVOUNG TOAAOTA®V TPoidvtwv otnv omoio. OA0l Ot TOHTOL TPOidVTOg
amofnkevovtal og £vav amodnKeLTIKO YMPO (YVONV PopTio) avartdyOnKe Kot amodelyOnKe 10 CLYYEVES e TO

Ocopnua 1, Osopnua 2:

OEQPHMA 2: [0 kalc meAdry j, vmépyer pio. oovaptnon opiov h* j(zy,z,)=c";, tét0100 ote n Pértionn
OTOPATH, UETG TNV TANPY ECOTNPETNON TOV TEAGTN j EIVOL VO, TPOYWPHOEL TO OYNUA OTOV ETXOUEVO TeAoTh j+1

4 * * 4 4 I4
eav h" j(zy ,z, )=2c";, aldiadg va emotpéyel otny amoOnkr.

Me Bdon 10 devtEPO 0WTO Bedpnpa, Umopel va TPocdloploTel N PEATIOTN amOPACT] Y10 TOV TPOOPIGHO TOV

oynuatog aeotov eEummpetnoet tov meddtn j. Edv o cuvdvacpog tov eoptiov (z;,z,) eivarl 1€1010¢ OOTE

B j(z) 25 )= c"; TOTE TO OYNUO TPEMEL VO, TPOYMPNGEL OTOV €mOUEVO meAdTn. EdGv Sev 1kavomoteitol 1
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TOPOTAVEO avVIcOTNTO, TOTE TO OYNUO TPETEL Vo eMOTPEYEL oty anobnkn. Kot o avtr| v mepintwon n

ovvaptnon A" j(z;,z,)=c"; gtvoun toun v dvo dpav e EElcwong (I1-10).

Kot ot dvo meputtdoelg poviehomomnkay kot emdvdnkov yio 300 mpoidvia, GAAL TO OTOTEAECUOTO
pmopovv va emektafovv o n mpoidvta (PAEme Appendix B yio tnv pobnpatikn Statvmmon Tov TpoPAnpatog
pe 3 mpoidvto otnv omoia 0 KABe TOHTOG TPOIOVTOG AmTOONKEVETOL GE JUPOPETIKO OMOONKEVTIKO YMDPO GTO

OYMHO).

H onddoon tov npotevopevov nefddmv avardbnke pe v enthvon onpoavticod aptfpod tpofAnudtov ové
nepintmon (30,000 avd wepintmon). Kot yio 116 000 mepTtdoELS, HEG® TNV EKTEAECNG CNUOVTIKOV aptBpov
Toxaig dNpovpyNUEVEV TpoAnudtov, PBpétnke 6Tt 1 adéNon TG YOPNTIKOTNTOS TOL OYNUOTOG EXEL MG
OTOTEAEGHO TNV OYXEOOV €KOETIKN OOENGT TOV VTOAOYIGTIKOV ¥PpOVOL NG AVoNG. Amo TNV GAAN, €dv N
YOPNTIKOTN T TOV OYXNLOTOG TOPALEIVEL 6TABEPT], O VTOAOYIGTIKOG YPOVOS TOL alyopiBuov avéaveTon oyedov
ypoppikd pe to tAnbog tov merato®v. Ta amoteAéopato tov aiyopiBuov g mepintmong dtovoung dvo
TPOTOVI®V TNV omoio 0 KAOe THTOG TPOIOVTOG OmOONKEVETAL GE OLOPOPETIKO ATOONKEVTIKO YDPO GTO OGN0

(ovvolkn yopntikdTnTa TOV OYNHATOS Q) Paivovton oto Zymua [1-4.

0000 IepinTmon 2 Tpordvrav
1

) g
=3

YroloyioTikag X pévog(sec

>

-—— -3
- o))

- -1

Zyqpoa [-4. Ta aroteléopata tov alyopifuov yia 2 poidvta mov anobnkedovron EexmpioTd.
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H debtepn mepintwon amodnkevong npoidviav oe €va eviaio y®po amodeiydnke onpavtikd wo cvvhe.
Avto ogeidetar oto emmpdcoheta Prpoto AOYIGTOTOINONG TOV HOVTEAOD YPOUUUIKOD TPOYPOUUATIGLOV,
®ote va evtomiofoiv ot BEATIOTEG TOGOTNTES amOOENATOG TOV TPEMEL VoL POPTOOOVY GTO OdynuaL, HETA aTd
KGOe emotpoen avtod oty amobnkn. H diepehvnon g amddoons tov akyopiBpov g mepintwong avtrg
napovctalovior oto Zynua I1-5. Eivan EexdBapo 0TL 1 adEnom g xopnTikOTNTOS TOL OYNLUOTOS EXEL MG
amotélecpa TNV oxeddV ekbetikn avénomn tov vIoAoyloTKoh Ypdvov TG Avong. Amd v dAAN, €dv m
YOPNTIKOTNTO TOV OXNLATOG TapapLeivel oTabept}, 0 VTOAOYIGTIKOG XPOVOS TOL akyopiBpov avéavetal oyxedov

YPOUUIKE e TO TANO0G TOV TEAATMV.
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Tyqpa II-5. Ta aroteléopata Tov odyopifuov yia xHdnv eoptio.

To VRDRP pg Xtoyoactikég Avavopég ko MaparaPéc

Y10 Kepdhrao 7 eEetdlovpe v mepintmon Awavoudv ko [Moaparafov tov VRDRP pe dyvoot ek tov
TpotéPpmV (oToyaotikn) {ftnon. e avth v mepintwon to dynua ogv davEpel HOVO TPOTOVTA OAAG Ko
ToPOAQUPAVEL EMOTPEPOUEVO, TPOTOVTO OO TOVG TEAATEG TOV EMIGKENTETOL (T.). AOEEG TAAETES, TTPOTOVTOL

mov €yovv ANEEL 1 TOL £YOVV KATAGTPOPEL). XKOTOS TOL TPoPANUATOS €ivol M €laylotomoinon g
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davubeioag andotaong (KOGTOVG) VIO 6TOYACTIKY {NTNoN TOGO Yo To TPOTOVTO SLOVOUNG OGO Kot Yo QVTd

™G TopaAapns.

g oot TV Tepintoon pénel va AneBodv vtoyT emmAéov mapdyovtes. Metd v emickeyn TOL OYNLOTOG
omv amofnkmn, mpémel vo AneBel o emMmALOV AmOPACT), CXETIKO WLE TNV TOGOTNTO TOV TPOIOVTOG Yol
ndAnon mov Oa poptmBel oTo dynua. Avtd cupPaivel AOY® TOL YEYOVOTOG OTL TO OYXNMUOL OEV UITOPEL ATAL VoL
Qoptmbel £0C TO PEYIOTO TNG XOPNTIKOTNTAS TOV, KABITL Tpémel va mpoPrepbel kevog ydPog doTe TO dynua
va pmopel vor mTopaAdPel Kol EMGTPEQOUEVE TPOIOVTA, OTOPEVYOVTIOG EMTPOCHETES EMGTPOPES GTNV

amoonk.

H ocvvaptnon dvvaopukod mpoypappaticpon yo v nepintmon Awvopmv kot [apaiafov tov VRDRP pe

GyvooTn €K TV TPoTEP®V (GToY0oTIKN) {Tnom dideTon TapakdTm:

fj (z,b) = min

k
[ Cj it z ijn(z—f ,b +,0m)P_,~+1,k7Tj+1,m

ki <z mp"+b<0-(2-&Y)

. k
DD R R ) SR

kz<gt mp"+b<Q
: k
+ Z Z |:2cj+1,0 + min  f4[0,p" -[0-(z-¢ )_b]]j|pj+l,k”j+l,m
k:ék <z m:Q—(z—=&*)<p” +b 0<0<0-[p" =0+ (z=87)+0] |
: k
+ Z Z {2‘7141,0 Tk o ko bfj+1[9—(§ -2).[p" _(Q_b)]]}pjﬂ,k”jﬂsm
kiz<&t m:Q<p" +b ¢ —z20<20-z+¢" —p" -
(T1-11)
€j.0 * €041
DI VR CE RV S LR )
i+ 2P )P i1 k7 jrtm
kgt <0 mp"+0-51<0
. , : k
Jmin) Z Z |:20;+1 0+ ,c_gngs<ij+l(S_(§ _9)’0):|pj+1,kﬂj+l,m >
= kio<gt mip"<Q o
+ 2010+ min i [S,pm—[Q—(H—e‘k)]]}P z;
K N k:é; <0 ng<;¢k><pn[ 07 ocsso-1pm-0+0- ! s J
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onov fi(z, b) 10 eAdyioT0 KOGTOG OO TOV TEAATN j HéEYPL TO TEAOG TNG SLdPOUTG, €AV TO omdbepa oL £xet
amopeivel 6To oYU Eivat z Yo TO TPOIOV SLVOUNG Kot b yiol To Tpoidv mapoarafrig Kot 1 otoyaotikn {ftnon

tov mehdtn j+1 eivon (&5, p™) aviictoyo. EmmpdcOeta, Q M yopnTIKOTHTO TOL OYAHOTOS, KOL

(P js1go 7 jiim) OL mOovoTNTEG VO ExEl 0 EAdTNG j+1 TV avtictoym {Rton (&5, p™).

YV TEPItTOON MOV 1 EMGTPOPN OTNV amobnkn yiver petd v eéummpétnon tov meAdtn j+/1 tote M
TOGOTNTA TOV TPOIOVTOS oL B PopT®OEl 6TO Gy pmopel va givon tétoto dote N {RTnon Tov meldtn j+1
va KavormomBel TANpog (Yo tpoidvta mapadoons N mapaiafne). Eav dpmg, n emotpoen oty amodnkn
ocvpPet Tpv v e&umnpétnon Tov TeAdTr j+1 ToTE pio EMITALOV (APECOG EMOUEVT)) EMGTPOPT] GTNV OTOONKN
Bo kotaotel amopaitntn 6TV TEPITTOGN TOL 1) TOGOTNTA TOV POPTM®ONKE GTO OYNUO (1] O YDPOG OV Eiye
petvel yio ta Tpoiovto mov Ba mapaAn@Bodv) dev elvar ETOPKNG VO IKAVOTOMGEL TANPOS TV CHTNon Tov

GLYKEKPLUEVOD TEAATT.
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Tyfpa I1-6. Ta amoteAéopata ToL oAyopifpov TG TEPITTOONG SLOVOUDY Kot TOPOAUBdV.
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Aw g extéreong onpovtikov aptBpov (30,000) Tuyaing onpovpyNUEVEOVY TPOPANUAT®VY Yia TNV TEPITT®ON
TV dtvopmv Kot moparafdv tov SVRDRP (Zynua I1-6), Bpébnke 611 1 adénon g xopnTikodTnTOS TOV
OYNMOATOG £XEL WG OMOTEAEG O TNV GYEOOV eKBeTIKN AHENOT TOV VTOAOYIGTIKOV XPOVOL TOV aAyopifuov. Ao
™V GAAN, €4V M YOPNTIKOTNTO TOV OXNUATOS TopaEivEl 6TaBEPT, O VTTOAOYIGTIKOG XPOVOS TOL aAyopifov

aLEAVETOL GYESOV YPOUIKE [e TO TAN00G TV TEAATMV.

Yopmepaopata

Xy mapovoa dTpPn peietOnke po Pacikn mePInT®ON TOL TPOPANUNTOS SPOUOAOYNONG OYNUATOV
(Vehicle Routing Problem - VRP), otnv omoia éva dynuo Eekva amd v amodnkn kot eEumnpetel meldteg
ue mpoxalopiouévy oepd emiokeyns, EMOTPEPOVTOS OTNV AmodNKN Yo EXOVaPOPT®ST OTaV aVTO KpiveTan
oKOmo. L1dy0g tvar  e&umnpétnon OA®V TOV TEANTMV Kol 1| EAa(LOTOTTOINGN NG olavvbeicag andotaong

(k6610VG). H cvveiopopd g dwatpiprc cuvoyiletor oto akdAovOa:

e [0 pdT™ Qopd peretnOnKe TO0 TPOPANUA SLOVOUNG TOAAATAMDY TPOIOVI®V UE TPOKOOOPIGUEVT GEPA
emiokeynsg, Kot ot 000 LVIO-TEPMTMOELS OVTOV: o) KAOE TUTOG TPOIOVTOS VO PUAAGGETOL GE ELOKO
amoONKELTIKO YDPO OYNUATOS HE TPOKAOOPIGUEVT YOPNTIKOTNTA KOt B) OAOL Ol TOTOL TPOIOVT®V Vol

arofnkedovian otov £va (eviaio) ydpo Tov oynuatoc. [potddnke akydpiBuog BéATIoTC EMiAVOT|G TOL.

o [0 mpd Popd avalvOnie 10 TPOPANLA SLAVOUNG TPOIOVTOG e TPOKAOOPIGUEVT] GEPA ETICKEWYTG KoL
otoyaotikn {Rmon, 660 aeopd otV EMOPACT TNG OLOKVIOVONG AAAY Kot TOL HEGOV OpoL TG {RTNOoNg

070 EMYIOTO OVAUEVOUEVO KOGTOG TNG SLOOPOUNS.

o T mpdIN Popd peretnke to mTPOPANUA davoung TOALOTA®Y TPoidvTwV pe mpokaBopiouévn celpd
eMiokeyNng He oToXaoTikn {NTNom, Kot ot dVO LIO-TEPWTMOELS AVTOV: 0) KaBe TOMOG TPOidvVTOg VO
QLAAGGETAL GE €101KO amoONKELTIKO YDOPO OYNUATOG HE TPOKABOPIGUEV YOPNTIKOTNTA Kot B) GAol ot
TOmMOL TPOiIOVTOV va amodnkevovtal otov éva (eviaio) ydpo tov oynpotoc. [Ipotdbnke aiydpiBuog
avedPEONG TOV EAAYLOTOV AVOUEVOUEVOD KOGTOVG TNG OLOPOUNG KO TOALTIKY OVEVPECNG TNG OLOOPOUNG

N omoia oTNPiYTNKE oTA AP HaTo TOV avarTLYONKAY Kot TapovGtdlovTal otV daTpiPn.
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o T mpdOIN Qopd peretOnke to TPOPANUA davoung Kot TapaAaPng Tpoidviowv pe mpokabopiopévn
oelpd  emiokeyng kot otoyaotikn Cnmmomn. Ilpotdbnke oalyopiBuog avedpeong Tov  eAdyoTOV

AVOUEVOLEVOL KOGTOVS TNG SLOOPOUNG KO TOATIKT aveDpeSNS TNG S10dPOUTG.

To amoteréopato TG mopovcas daTping pumopodv va ypnoipomombodv ce €va GOGTNUO VITOCTNPLENG
Mg aroedcemv, yio pio TAnfopa tepmtOcey (YVoot 1 dyvootn (nmon melatdv, £va 1 TOALOTAN
TPOTOVTO, TAPUOMOELS, 1 TAPUdMOELS Kol ToparaPés): Me avtd tov Tpomo pmopodv va eEarerpBodv ot
TUYOiES ATOPAGES OPOUOAOYNONG, EANYICTOMOIDVTOS TO. GLUVOAMK(O AEITOLPYIKE KOGTN TG eToupiog, Kot

aLEAVOVTOG TNV GLVOAMKN TAPOYMYIKOTNTA KOl TOL ENITEDD EELTNPETNONG TOV TEAATAOV TNG.
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Abstract

In this dissertation a basic case of the Vehicle Routing Problem (VRP) is studied, in which a single vehicle
starts from its depot and serves customers in a predefined sequence. The objective is to serve all customers
and minimize travel distance (cost). This problem is of significant practical interest; indicative applications
include Ex-van sales and Material Handling systems. Several cases of this problem, of increasing

complexity, are posed, analyzed and solved. These cases are:

e Multiple product delivery with deterministic customer demand. Two sub-cases are studied: a) the
compartmentalized load and b) the unified load case. The mathematical models, as well as new efficient
algorithms that solve these problems to optimality have been developed and analyzed.

e Multiple product delivery with stochastic customer demand. Both sub-cases mentioned above are
studied. For both cases we present the characteristics of the respective problems, novel methods to
determine the minimum expected cost, and the theoretical results that permit one to determine the
optimal decision after serving each customer. Both cases have been addressed using dynamic
programming, and for both it has been proven that there exists an appropriate threshold function for each
customer, which can be used to determine the optimal decision. Extensive analysis of the proposed
algorithms has been conducted.

e Pickup and delivery (of product) with stochastic customer demands. In this case the vehicle not only
delivers products to customers but it also picks up returned items from each customer (e.g. damaged
goods, or empty packaging). The characteristics of the problem have been presented, together with a
novel method to determine the minimum expected cost, and the optimal decision after serving each

customer. The proposed method has also been analyzed extensively.

This work may support a decision support framework, which can be utilized in fixed routing operations for a
wide variety of cases and applications (deterministic or stochastic demand, single or multiple products,
delivery or pickup & delivery): Thus, ad-hoc sub-optimal decisions can be eliminated, minimizing total

operating costs, and increasing the overall productivity and customer service of the distribution fleet.
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Chapter 1

Introduction

1.1 Introduction

One of the areas of Operation Research that has attracted significant research attention at least for the past 30
years is the area of optimizing the transportation and distribution of goods. In an urban environment
distribution represents, on average, the highest portion of logistics costs (Ballou, 1999). In some special
cases, such as the beverage or the alcoholic drinks industry, distribution costs account for 70% of the value-
added activity costs (Golden and Wasil, 1987). It, therefore, becomes apparent that cost effectiveness of

transportation and distribution is of outmost importance for the competitiveness of this and other sectors. The
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main parameters that influence transport and distribution activities, and, therefore, affect costs directly

include:

e Transport / Distribution Network (network architecture, number and location of facilities such as hubs
and depots, the number and location of destination customers, or sites, etc.)

e The number and capacity of vehicles in the fleet

e Service parameters (delivery unit loads, time windows, etc.)

e Operational parameters (shifts, activity plans, etc)

e Fleet planning — routing.

This dissertation focuses on the last area, and especially on vehicle routing. The design of optimal or near
optimal delivery routes, in the case in which distribution vehicles originate from a central depot and serve a
number of customer points, is generally referred in the bibliography as the Vehicle Routing Problem (VRP)
(Toth and Vigo, 2002b). When solving the VRP, it is common in the literature to assume that the customer
demand is known in advance. This assumption is valid in a range of practical cases, in which delivery is
performed based on fixed customer orders. Many algorithms have been proposed to address these cases
(Dantzig and Ramser, 1959; Clarke and Wright, 1964; Assad, 1988; Golden & Assad, 1988; Laporte and
Osman, 1995; Toth and Vigo, 2002b). However, in other cases, the customer demand may be random, and/or
other parameters may be stochastic (e.g. travel time / cost of the network arcs). Routing problems that

involve randomness are characterized as Stochastic Vehicle Routing Problems (SVRP).

The Vehicle Routing Problem with Stochastic Demands (VRPSD) belongs to a category of a priori
optimization problems (Bertsimas et al, 1990) for which it is impractical to consider an a posteriori approach
(according to which an optimal solution is recomputed every time the value of a stochastic demand is
revealed). Instead, an a priori solution attempts to obtain the best available solution over a range of problem
scenarios, prior to the realization of any single scenario. According to Roberts and Hadjiconstantinou (1998),
who evaluated the computational performance of both types of solution methods, the a priori solution of a
Vehicle Routing Problem with random demand resides, on average, within 8% of the solution obtained by a

reoptimization-based, a posteriori strategy.
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In this dissertation a basic case of the VRP is studied; in this case, a single vehicle starts from its depot and
serves customers in a predefined sequence. The demand of each customer is either known in advance
(deterministic) or not (stochastic). The distances (travel times or costs), among all points of the network
(depot and customer points) are fixed and known. The quantity to be loaded to the vehicle cannot exceed its
capacity. Upon completion of service at each customer site, the vehicle has to either (a) travel to the next
customer, or (b) return to the depot in order to reload (and/or unload), and resume its route. Note that even
though the stock on board the vehicle may be adequate to serve the next client, a preemptive return to
replenish the vehicle’s stock may be beneficial in order to avoid future returns from a customer site that is
further away from the depot. The objective is to serve all customers and minimize travel distance (cost). The
predefined customer visit sequence is a significant restriction, which, nevertheless is encountered in many

practical cases (due to hard customer time windows, traffic avoidance practices, etc.).

For the single product case both the deterministic and the stochastic version of this problem have been
addressed in the literature (see Yang et al. (2000)). In this dissertation more complex cases are studied,

which also present significant practical value. These cases are:

e Multiple product delivery with deterministic customer demand. Two sub-cases are studied: a) the
compartmentalized load and b) the unified load case.
e Multiple product delivery with stochastic customer demand. Both sub-cases mentioned above are studied

e Pickup and delivery (of product) with stochastic customer demands.

All five cases above are of significant practical value in the Logistics industry (e.g. Ex-van Sales) and in
material handling within manufacturing plants with fixed route vehicles. The remainder of this dissertation is
structured as follows: Chapter 2 presents the most relevant research to-date in this field. Furthermore, in this
chapter we identify the research gaps, we define the problems to be addressed, and discuss the theoretical

value and practical implications of these problems.

In Chapter 3 we present the basic form of the Vehicle Routing with Depot Returns Problem (VRDRP) under
deterministic demand. The problem characteristics, the mathematical model and an optimal solution method

is described. This method is based on dynamic programming and has been inspired by the work of Yang et

al. (2000).
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In Chapter 4 we propose and investigate: (i) the case of multiple-product deliveries in which each product is
stored in its own compartment in the vehicle and (ii) the case of multiple-product deliveries in which all
products are stored together in the vehicle’s single compartment. The problem characteristics, the
mathematical models and optimal solution methods are described. The Chapter concludes with performance

analysis of the solution method.

In Chapter 5 we present the stochastic version of the Vehicle Routing with Depot Returns Problem
(SVRDRP). In this problem the customer demands are assumed to be independent random variables with
known distributions. The purpose of this chapter is to analyze the problem with respect to critical parameters
that characterize the randomness of the demand. This lays the foundation for considerable enhancements in

the next chapters.

In Chapter 6 we extend the Stochastic Vehicle Routing with Depot Returns Problem (SVRDRP) to address
the case of distributing multiple product types. In line with Chapter 4 we address two cases;
compartmentalized and unified load. In this chapter we present the characteristics of each problem, new
methods to determine the minimum expected cost, and the theoretical results that permit us to determine the
optimal decision after serving each customer. The performance of the proposed methods is analyzed by

solving a large number of sample problems per case.

In Chapter 7 we examine the Pickup and Delivery case of the VRDRP under random demand. The
characteristics and the mathematical formulation of the problem are presented, together with a new method
to determine the minimum expected cost. Furthermore the proposed method is used to determine the optimal
decision after serving each customer. Finally, the performance of the proposed methods is analyzed by

solving a large number of sample problems.

The dissertation concludes with Chapter 8, in which the contribution of this dissertation and the related

conclusions are presented, together with future research directions.




University of the Aegean Department of Financial and Management Engineering

Chapter 2

Background

2.1 Introduction

This Chapter presents the main contributions of the literature that are directly related to the problem(s)
studied in this dissertation. We overview the basic types of goods distribution in an urban environment, and
define the related problems addressed in this work. For these problems, we review the most relevant research
to-date and identify promising areas for further work. The Chapter concludes by discussing new

contributions of the present dissertation in these areas.
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2.2 The Urban Distribution Environment

The Urban Distribution Environment represents one of the most complex settings of operations for a
distribution company. Congested road networks, one-way systems, traffic peaks at particular times and areas

are some of the complexity factors that characterize this setting.

One may distinguish at least two ways of distributing goods in urban areas: Standard deliveries and Ex-van
sales (Giaglis et al., 2004). While in both cases operations are performed within a typical delivery network
with N warehouses and M customers, that are served by a fleet of K vehicles, these two cases differ in the
way they handle demand. In standard deliveries the demand is known (usually driven by pre-placed customer
orders), while Ex-van sales operate in an unknown demand environment, in which orders are placed during

delivery at the customer site. Table 2.1 summarizes the main attributes of the two modes of urban deliveries.

Table 2.1. Characteristics of Standard Deliveries vs. Ex-van Sales in Urban Distribution

Standard Deliveries Ex-van Sales
Fixed geographical Network
Fixed truck and fleet capacity

Known demand per customer site Unknown demand per sales point
Fleet delivers based on orders Orders are not known in advance (only an estimate of
aggregate demand in the sales area exists)
Fixed schedules and delivery time windows More relaxed schedules and delivery time windows

Truck routes determined a priori based on demand, network Distribution of work per truck is based on past area sales and
traffic, and other parameters in a near-optimal way business agreements with the drivers

A significant amount of research has focused on standard deliveries in the past. Ex-van Sales have not
received as much attention, and it is this type of Urban Distribution that forms the motivation for the work of

this dissertation.
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2.3 The Vehicle Routing Problem

Transportation and distribution contribute approximately 20% to the total costs of a product (Reimann ef al.,
2003). These costs incur between any two subsequent links of the supply chain, and between the final link
and the end customer. Both industry and academia have long recognized the potential for optimization of
operations in this area. Formally, most problems in goods distribution are related to the Vehicle Routing
Problem (VRP). This problem is a generalization of the classic Traveling Salesman problem (TSP)
(Christofides, 1979; Cornuejols and Nemhauser, 1978; Gendreau et al, 1997), and seeks a set of efficient
vehicle routes to serve a number of geographically dispersed customers. The VRP was introduced by
Dantzig and Ramser (1959), almost 50 years ago; in this original work they described a practical application
concerning the delivery of gasoline to service stations, and proposed the first mathematical programming
formulation and algorithmic approach to solve it. Since then, the VRP has received considerable research

attention, and has become one of the fundamental problems of Operations Research.

The objective of the VRP is to deliver goods to a set of customers with known demands following minimum-
cost vehicle routes originating from and terminating at a depot (Clarke and Wright, 1964; Assad, 1988;
Golden & Assad, 1988; Laporte and Osman, 1995). A very useful survey of significant research results in
this problem is given by Toth & Vigo (2002b).

According to Stewart and Golden (1983), a compact and convenient formulation for the VRP can be written

as follows:
Minimize Z Zcijxl-jk
ki
subject to Z/uixijk <Q k=12,...m
i’j
x= lxl-jk Je S,
where:

c;j = the cost of traveling from i to j
x;x = 1 if vehicle k travels from i to j and x;; = 0 otherwise
m = the number of vehicles available

S = the set of all feasible solutions in the m-traveling salesman problem (m-TSP)
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1 = the amount demanded at location 1

Q = the vehicle capacity.

From the above formulation it is clear that the VRP is an integer-programming problem. It is also an NP-hard
problem (for information about the theory of NP-completeness refer to Garey and Johnson 1979), and,
therefore, practical problem instances cannot be solved to optimality within reasonable time; in fact there are
no exact algorithms available that consistently solve problems with more than 50—75 customers (see Toth &

Vigo, 2002).

2.3.1 Modeling approaches for the VRP

According to Toth & Vigo (2002b), three basic modeling approaches have been proposed in the literature for
the VRP. The models of the first type are known as vehicle flow formulations and they use integer variables
associated with each arc or edge of the graph (modeling the distribution network), which count the number
of times the arc or edge is traversed by a vehicle. These are the most frequently used models for the basic
versions of the VRP; they are particularly suited for cases in which a) the cost of the solution can be
expressed as the sum of the costs associated with the arcs, and b) the most relevant constraints concern the
direct transition between the customers within the route, so they can be effectively modeled through an
appropriate definition of the arc set and the arc costs. On the other hand, vehicle flow models cannot be used
to handle some practical issues, such as in cases in which the cost of a solution depends on the overall vertex
sequence, or on the type of vehicle assigned to a particular route (Toth & Vigo 2002b). The second family of
models is based on the so-called commodity flow formulation. In this type of model, additional integer
variables are associated with the arcs or edges and represent the flow of commodities along the paths
traveled by the vehicles. Only recently have models of this type been used as the basis for the exact solution
of Capacitated VRP (CVRP).

The models of the third family have an exponential number of binary variables, each associated with a
different feasible circuit. The VRP is then formulated as a Set-Partitioning Problem (SPP) seeking a
collection of circuits that minimize cost, serving each customer once and possibly satisfying additional
constraints. A main advantage of this model is that it allows for extremely general route costs (for modeling

costs that depend on the sequence of arcs and/or on the vehicle type). Moreover, the additional side
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constraints do not need to take into account restrictions concerning the feasibility of a single route. As a
result, the constraints can often be replaced with a compact set of inequalities. This produces a formulation,
the linear relaxation of which is typically much tighter than that of the previous model types (Toth and Vigo,
2002b).

2.3.2 Extending the fundamental VRP

In an effort to take into consideration important practical issues, the fundamental VRP has been extended in
a number of aspects. Indeed, one can distinguish several issues of practical importance that raise

considerable challenges in VRP-related research (Giaglis et al., 2004).

Vehicle Capacity: There exist formulations for both the Capacitated VRP and the Uncapacitated VRP
depending on whether vehicle capacities are considered. The Capacitated VRP (CVRP), as presented for
example in Toth and Vigo (2002a), is perhaps amongst the most widely researched variations of the problem.
Capacity considerations are important in the case examined here, especially in view of reverse logistics, in
which the capability of the vehicle to respond to the customer requirements depends strongly on its available

capacity.

Number of Stages: While the single-stage VRP (delivery only) is primarily concerned with the establishment
of outbound delivery routes, the double-stage VRP considers both delivery & pickup, i.e. outbound and
inbound distribution. For a treatment of the two-stage VRP see Savelsbergh (1995) and Yang et al. (2000).

Deterministic vs Stochastic Supply/Demand: The Deterministic VRP assumes that demand/supply is known
a priori, while the Stochastic VRP encompasses uncertainty in demand and/or supply levels (Min et al.,

1998). As discussed above, demand uncertainty is a key characteristic of Ex-van sales (see Section 2).

Planning Horizon (single/multiple periods): The Single Period VRP takes into consideration a single
planning period (for example, solving the distribution problem for next day’s deliveries), while the Multiple
Period VRP considers optimal solutions in multiple periods and therefore seeks for a good solution over a
longer planning horizon. In this case the initial schedule can be adjusted, according to the current needs for

distribution (Laporte, 1988).
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Time Windows: A classical variation of the VRP considers time windows, outside which deliveries cannot
be accepted. Time windows can either be ‘hard’, when they cannot be violated, or ‘soft’, in which case
violations are accepted but penalized. A recent analysis of the VRP with soft time windows has been

provided by loannou ef al.(2003).

Objectives: There exist Single-Objective or Multiple-Objective formulations of the VRP. The most common
VRP objective is to minimize the total cost of deliveries. However, additional objectives might be
considered, such as minimizing number of depots or maximizing customer satisfaction (Renauld et al., 2000;

Fisher, 1994).

Type of Approach: The computational complexity of the VRP has prompted the development of heuristics
since the 1970s (Christofides et al., 1969; Yellow, 1970; Wren and Holliday, 1972; Ashour et al., 1972;
Gillett and Miller, 1974). The development of heuristics especially in practical VRP cases still comprises a
significant research area (Laporte, 1992; Breedam, 1995; Hachicha et al., 2000; Laporte et al., 2000). Exact
solutions have also been developed; however, they can only be applied to vehicle routing problems of limited
complexity (Reimann, 2003). An example of an exact, branch-and-bound approach is presented by Fisher

(1994), in which the solution approach uses the minimum k-tree approach.

Table 2.2 (Giaglis et al, 2004) includes relevant VRP publications (the majority of which have been
mentioned above) and indicates that, while specific cases of the VRP have been rather extensively addressed
in the literature, others have not attracted similar attention. For example, a relatively limited number of
publications have focused in topics, such as the double-stage delivery, stochastic demand/supply, time-
windows, and multiple objectives. At the same time, more than approximately two-thirds of the approaches

employed use heuristics, while exact approaches can be found in about one-third of the cases.

It is also worth pointing out that the problem of Ex-van sales, which incorporates several complexities, such
as uncertain demand, multiple planning horizons, possible time windows, and others, has yet to be fully
addressed in the literature, despite being an important practical case with significant potential for

improvement.
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Table 2.2. VRP Taxonomy

Number of Nature of Vehicle capacity Planning horizon Time windows Objectives

Stages demand/supply

Single stage
Double stage
Deterministic

Stohastic
Uncapacitated

Capacitated

Single period
Multiple periods
No time
Windows
Soft windows
Hard windows
Single objective
Multiple
objectives
Exact
Heuristic

Ashour et al (1972)
Gillett and Miller (1974)
Dror and Ball (1987)
Robuste et al (1990)
Viiet et al (1992)
Fisher (1994)
Koksalan et al (1995)
Savelsbergh (1995)
Bowers et al (1996)

Beasley and Crhistofides (1997)
Modesti and Sciomachen
(1998)

Barbarosoglu and Ozgur (1999)
Van der Poort et al (1999)
Coy et al (1999)

Larsen (1999)
Secomandi (2000)
Renaud et al (2000)
Nanry and Barnes (2000)
Yang et al (2000)

Rego (2001)
Fagerholt (2001)

Glover et al (2001)

Toth and Vigo (2002a)
Tarantilis and Kiranoudis (2002)
Tarantilis et al (2003)

Ho and Haugland (2003)

loannou et al (2003)
Coverage 92% 8% 77% 23% 42% 58% 88% 12% 73% 12% 15% 92% 8% 31% 69%
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2.4 The Ex-van Business Model

Typically retail outlets (supermarkets, kiosks) monitor stock levels per item, and record seasonal
consumption trends. Based on this information they compile a forecast, which, combined with actual stocks,
is translated to purchase orders containing the quantity to be purchased per product. The lead-time of
purchase order processing (internal), as well as the lead-time of the supplier to respond to the order and

dispatch the goods (external), forms the total lead-time of such an order.

There are typically two sources of variability that may limit the effectiveness of outlet supply: First, there is
lead time variability which may be caused by unforeseen events and warehouse stock-outs. Secondly, there is
demand variability, and inevitable deviations from the forecast. These types of variability may affect the
ability of the outlet to satisfy the total daily customer demand for certain items. The Ex-van model attempts
to respond to such variations in an effective manner targeting especially high-demand commodities. This is
done by replenishing regularly the stock of certain types of commodities, so that the outlet (super market,

kiosk, etc.) can maximise its sales.

The typical Ex-van commodity types vary and depend on the type of outlet. For example, Ex-van

commodities in a Super-Market present the following characteristics:

e High daily customer demand
e Short expiration dates
e High storage requirements

e Low value per unit item.

Typical examples include fresh milk cartons, fresh yogurt, fresh fruit juice and fresh bread. Therefore, the
retail outlet may order a specific quantity per item via standard delivery, but also have a scheduled Ex-van
visit around mid-day. At the time of the visit the particular commodity stock levels will be examined, and if
found below a predefined threshold per commodity (assigned in advance by the outlet Inventory Manager),
additional product will be purchased from the Ex-van vehicle, therefore creating an Ex-van sales order. The

size of the Ex-van sales order may vary, depending on daily sales as well as the sales skills of the Ex-van
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driver / sales person. The typical Ex-van fleet size for commodities similar to the ones discussed above is
between 5-10 vehicles. Each vehicle is assigned a set of customers to be visited on a daily basis. Due to the
fact that each customer can define a time window within which Ex-van visits are allowed, the customer

service sequence is typically predefined and has to be observed, otherwise sales opportunities may be lost.

The mission of each Ex-van vehicle is to visit all assigned customer sites, and replenish the stock of selected
products. The demand of each customer point is not known in advance but it is revealed upon arrival.
Therefore, the total demand of a scheduled customer sequence typically exceeds the total capacity of the
vehicle for a particular item, forcing the vehicle to return to the depot in order to replenish its own stock,

before resuming its route.

As mentioned above, the Ex-van driver is a mobile Sales person, who satisfies the customer (pull model),
and attempts to sell as much as possible to the customer (push model). It is frequently the case, that the
outlet’s actual demand may be less than the actual sales quantity, due to the sales-orientation of the Ex-van
driver, an up-sell case. It is also common for the outlet to demand commodity A4 but to finally purchase both
A and B, an example of a cross-sell case. The Ex-van driver strives to maximise sales per customer point,
since there is typically a direct relation between the sales achieved and the commission / bonus of the

‘driver’.

In summary, the characteristics of the Ex-van Sales Model are:

a) The distribution vehicle operates in a designated area

b) The sequence of serving the customers within this area is typically predetermined, in line with the
time-window constraints of these customers

c) The vehicle usually carries multiple items

d) The customer demand is not known in advance

e) The vehicle may pickup returned packaging or expired products and carry them to the depot

f) If the vehicle disperses its entire inventory (of one or more items) prior to completing the route, it

returns to the depot for stock replenishment.

13
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Other Related Settings

In addition to the Ex-van environment, the above characteristics may also arise in other practical settings.
For example, material handling systems in a manufacturing shop often operate along fixed pathways that
connect the material warehouse with workcenters located along this pathway. Consider the case of
Automated Guided Vehicle Systems (AGVs), which are self-propelled vehicles typically guided along a
magnetic induction strip, or a painted strip on the shop floor, and transport discrete parts to workcenters,
obviously in a predefined sequence. Note that in addition to the main pathway connecting the workcenters,
there are spurs connecting each workcenter with the material warehouse, allowing the return and reloading of
the AGV. This case shares the same characteristics with the Ex-van sales case: The AGV serves a specific
area on the shop-floor, has limited capacity, can carry multiple items, the visit sequence is predetermined,
items may also be picked up from the workcenters, the demand of each workcenter may not be known in
advance (especially for items to be picked up), and the AGV is allowed to return to the material warehouse
for stock replenishment. It should also be mentioned that a similar situation exists in other types of material
handling mechanisms, such as monorail or powered overhead conveyors, which carry parts on a hanger with

limited capacity.

2.5 Relevant VRP problems

The types of vehicle routing problems that are most relevant to the setting described above and to the work

of this dissertation are presented in Table 2.3 and discussed below.

Table 2.3. Relevant VRP types.

Problem Type Characteristic

Capacitated VRP Each vehicle has a limited capacity

Split Delivery VRP The customers are served by n vehicles

The vehicle delivers products to customers and

VRP with Pickups and Deliveries collects items from them

Some of the problem parameters or variables are

Stochastic VRP .
not known in advance
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2.5.1 The Capacitated and Split Delivery Problems

In the Capacitated VRP (CVRP), the demands are deterministic, known in advance, the delivery vehicles are
identical (of equal capacity) and are based at a single central depot, and the objective is to minimize the total
cost (i.e., the total distance or travel time) needed to serve all customers. Generally, the travel cost between
each pair of customers is the same in both directions, i.e., the resulting cost matrix is symmetric. In some
applications, such as distribution in urban areas with one-way streets, the cost matrix may not be symmetric.
The CVRP has been extensively studied since the early sixties and, as a result, many heuristic and exact
approaches have been proposed (Laporte and Louveaux, 1990; Augerat et al. 1998; Toth and Vigo, 2002;
Tarantilis et al, 2005; Longo et al. 2006, Alba and Dorronsoro, 2006).

The Split Delivery VRP (SDVRP) is a relaxation of the VRP according to which the same customer is
allowed to be served by different vehicles, if this reduces overall costs. This relaxation is very important if
the size of the customer orders is in the order of the capacity of a vehicle. Dror & Trudeau (1990) have
proposed a heuristic algorithm for the SDVRP and have shown that allowing split deliveries can yield
substantial savings, both in the total distance traveled and in the number of vehicles used in the optimal
solution. In addition, the SDVRP has been formulated as an integer linear program and its solution has been
approached by constraint relaxation branch and bound algorithms (Dror et al. 1994; Ho & Haugland, 2004;
Bompadre et al, 2006).

2.5.2 The VRP with Pickups and Deliveries

In the Vehicle Routing Problem with Pickups and Deliveries (VRPPD), the customers may also return some
items during the vehicle’s visit (e.g. empty packaging, returned product to be delivered to the depot, items to
be delivered to another customer). In the basic version of the VRPPD, each customer i is associated with
two quantities d; and p; representing the demand of commodities (measured by the same unit of measure) to
be delivered and picked up at customer i, respectively. For each customer i, O; denotes the vertex that is the
origin vertex of the delivery demand, and D; denotes the destination vertex of the pickup demand. It is
assumed that at each customer location the delivery is performed before the pickup; therefore the current

load of a vehicle arriving at a given location is defined by the initial load minus all products already

15




University of the Aegean Department of Financial and Management Engineering

delivered plus all products already picked up. The VRPPD consists of finding a collection of exactly K

simple circuits with minimum cost, such that:

= Each circuit visits the depot vertex;

= The current load of the vehicle along the circuit must be nonnegative and may never exceed the vehicle
capacity Q;

= For each customer i, the origin O;, when different for the depot, must be served in the same circuit and
before customer i; and

= For each customer i, the destination D;, when different from the depot, must be served in the same circuit

and after customer i.

It is, therefore, obvious that in the VRPPD it is necessary to plan for maintaining enough empty space on the
vehicle in order to accommodate the returned goods or items (in cases in which deliveries and pick ups are of
the same order). This restriction makes the planning problem harder and can lead to sub-optimal utilization
of vehicle capacities, increased travel distances or a need for additional vehicles. The VRPPD is NP-hard in
the strong sense, since it generalizes the Capacitated VRP (CVRP). The latter is obtained when O; = D; and
pi=0foreachi e V.

Variants of the VRPPD include the so-called TSP with Pickup and Delivery (TSPPD), in which K = /. In a
significant common variant, all delivery demands start from the depot and all pickup demands are brought
back to the depot, and, thus, there are no interchanges of goods between customers. Other problem variants
include; a) relaxing the restriction that all customers have to be visited exactly once, or b) each vehicle must

deliver all the commodities before picking up any items.
The solution of the VRPPD has recently been approached by promising metaheuristics which include tabu-

search using arc-exchange-based and node-exchange-based neighborhoods, and employing different and

interacting tabu lists (Righini, 2000; Nagy & Salhi, 2005; Alfredo et al., 2006; Pisinger and Ropke, 2007).
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2.5.3 The Stochastic VRP

The Stochastic Vehicle Routing Problem (SVRP) refers to a family of problems, that combine the
characteristics of stochastic and integer programs, and are often regarded as computationally intractable
(Gendreau et al, 1996). Therefore, only relatively small instances can be solved to optimality and effective
heuristics are hard to design and assess. The most common stochastic VRPs are the Vehicle Routing Problem
with Stochastic Demands (Dror ef al., 1989; Laporte, 1989), the VRP with Stochastic Customers (Bertsimas,
1988; Waters, 1989), and the VRP with Stochastic Customers and Demands (Jezequel, 1985; Jaillet, 1987;
Jaillet and Odoni, 1988).

The VRP with Stochastic Demands (VRPSD)

In this problem, the demands are usually independent random variables that may (or may not) follow a
known distribution based on historical demand. This problem often arises in practice. A typical example is
garbage collection, in which it is impossible to know a priori the quantity to be collected at each collection.
Another example, is the delivery of petrol to petrol stations. In this case, when a customer issues an order it

is unknown how much petrol will be sold in the time elapsed between the order and the delivery.

In order to address the inherent uncertainty in this type of VRP, a recourse action (i.e. return to the depot in
order to refill) is usually embedded into the formulation of the problem, and penalties are incurred in the case
of a route failure (Stewart and Golden, 1983). Due to the stochastic nature of this problem, the objective
function is the expected value of the total route cost; the goal is to approach the optimal value, which can be
derived from the deterministic counterpart of the particular problem (Bertsimas, 1992; Trudeau & Dror,
1992; Dror, 1993; Birattari et al. 2005). Bertsimas (1992) constructs an a priori sequence among all
customers of minimal expected total length and proposes heuristics for the solution of the problem. His
approach proved to be a strong and useful alternative to the strategy of re-optimization in capacitated routing
problems. More recently, Birattari et al. (2005), proposed five metaheuristics (simulated annealing, tabu
search, local search, ant colony optimisation, and evolutionary algorithms) and tested the effect of

hybridization (TSP-approximation and VRPSD-approximation).
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Secomandi (2000, 2001) has fairly recently applied Neuro Dynamic Programming techniques to the VRPSD.
He addressed the VRPSD with a re-optimization approach, in which after each customer demand is revealed
the remaining part of the problem is re-solved. This approach may yield better solutions than the preventive
restocking strategy (returning to the depot before a stock out actually occurs), but it is much more
computationally expensive. Moreover, the initially planned route may be altered completely, and this

situation may present a limitation in practice.

Yang et al. (2000) investigate the single and multi-vehicle VRPSD. Instead of adopting a simple recourse
action usually suggested in the literature, an optimal restocking policy of the vehicle has been incorporated in
the route design. In particular, the restocking points are deliberately planned along the route, such that the
probability of the route failure, and the accompanying recourse cost (including any penalty) is reduced, and
the expected total cost of the routes is minimized. Two heuristic algorithms are developed to construct both
single and multiple routes that minimize total travel cost. The algorithms (route-first-cluster-next, and
cluster-first-route-next) solve separately a) the problem of clustering customers to be served by different
vehicles, and b) the problem of finding the best route within each cluster. Both algorithms seem to be
efficient and robust for small size instances, as shown by comparing the results to those obtained from
branch-and-bound solutions for instances with up to 15 customers. It has been shown that, for the
unconstrained case, a single route design gives the best solution. However, for many practical situations, a

large route is impractical, due to various practical restrictions.

The VRP with Stochastic Customers (VRPSC)

In this problem the customers are present in the route with some probability but they have deterministic
demands. The vehicle’s total capacity must be respected and returns to the depot may become necessary, if
the total route demand exceeds the vehicle capacity. According to Gendreau et al. (1996), two interesting
properties stand out and apply both to the VRPSD and the VRPSC. First, even if travel costs are
symmetrical, the overall solution cost depends on the direction of travel (Dror and Trudeau, 1986; Jaillet and
Odoni, 1988). Dror and Trudeau (1986) present two stochastic programming models: Chance-constrained
programming models and dependent-chance programming models. A genetic algorithm is designed for
solving the proposed stochastic programming models, and the effectiveness of this algorithm is illustrated by

solving numerical examples.
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The VRP with both Stochastic Customers and Demands (VRPSCD)

In this problem the customers are present in the route with some probability and their demands are also
independent random variables. The VRPSCD is an exceedingly difficult problem. Even computing the value
of the objective function is complex. Bertsimas (1992) provides a recursive expression for the VRPSCD, as
well as bounds, asymptotic results and an analysis of several re-optimization policies. Motivated by
applications in strategic planning and distribution systems, rather than resolving the problem when the
demand becomes known, Bertsimas proposes to construct an a priori sequence among all customers of
minimal expected total length, and proposes heuristics for the solution of the problem (under general
probabilistic assumptions). His approach proves to be a strong and useful alternative to the strategy of re-

optimization in capacitated routing problems.

2.6 The Vehicle Routing with Depot Returns Problem

The problem that models the case(s) discussed in Section 2.4 will be termed the Vehicle Routing with Depot
Returns Problem (VRDRP). In this problem, a single vehicle starts from its depot and serves customers in a
predefined sequence. The demand of each customer is either known in advance (deterministic) or not
(stochastic). The distances (travel times or costs), among all points of the network (depot and customer
points) are fixed and known. The quantity to be loaded to the vehicle cannot exceed its capacity. Upon
completion of service at each customer site, the vehicle has to either (a) travel to the next customer, or (b)
return to the depot in order to reload (and/or unload), and resume its route. Note that even though the stock
on board the vehicle may be adequate to serve the next client, a preemptive return to replenish the vehicle’s
stock may be beneficial in order to avoid future returns from a customer site that is further away from the

depot. The objective is to serve all customers and minimize travel distance (cost).

The predefined customer visit sequence is a significant restriction, which, nevertheless is encountered in
many practical cases (due to hard customer time windows, traffic avoidance practices, etc.). One may define
several cases of this problem of increasing complexity. These cases are discussed below, along with the

available literature.
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The deterministic VRDRP

According to this problem, the demand of each customer is known in advance (deterministic) and the
challenge is to identify the minimum cost route, which may include depot returns for vehicle stock
replenishment. This problem is addressed in Chapter 3 of this dissertation The VRDRP has distinct

differences when compared to the classic Vehicle Routing Problem (VRP):

1. The customer visit sequence in the VRDRP is pre-determined.

2. Inthe VRDRP the vehicle may visit the depot multiple times. In fact, it may be advantageous to return to
the depot, even if the stock on board is adequate to satisfy the demand of the next customer(s), if such a
preemptive return minimizes the total route distance.

3. The VRP yields a solution in which the number of routes (tours) is equal (or less in some extreme cases)
to the number of vehicles. The VRDRP yields solutions with a number of tours less or equal to the

number of customers.

VRDRP with Multiple Products

In this case multiple products are delivered to the customers. The demand of each customer for each product
is known in advance (deterministic). The challenge is again to identify the minimum cost route including the
necessary depot returns for vehicle stock replenishment. This case consists of two distinct sub-cases, a) the
sub-case in which each product is stored in its own compartment the capacity of which is fixed, and b) the

sub-case in which all products are stored together in the vehicle’s single compartment.

Note that, in this last (unified) load sub-case there are additional issues to be considered; for example, an
additional decision needs to be made regarding the quantities of stock to be loaded onto the vehicle. This
problem is addressed in Chapter 4 of this dissertation.

VRDRP with Pickups and Deliveries

In this case the demand of each customer is known in advance (deterministic) but it involves both delivery as

well as pickup of goods. Thus, an additional decision should be made concerning the quantity to be loaded to
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the vehicle each time the vehicle returns to the depot. This is because unnecessarily high stock levels may
prevent the collection of returned items, therefore causing additional depot returns and lower customer
service. The challenge is again to identify the minimum cost route. This problem has been presented and

addressed in Tsiribas et al. (2007).

The Stochastic VRDRP

In this case, a single product is distributed, but the demand of each customer is not known in advance. The
objective is again to identify the minimum expected cost including the necessary depot returns for vehicle
stock replenishment. This problem was initially treated in Yang et al. (2000). In this paper, the authors
propose two heuristic algorithms to construct both single and multiple routes that minimize total travel cost.
These methods were found to be, in general, superior to those of which adapt a deterministic method. The
two significant results of Yang et al that relate to our work are: a) The dynamic programming formulation to
determine the minimum expected cost, which has been extended in this work to address more complex and

intersting scenarios, and b) the theory of deriving optimal policy of service.

The stochastic VRDRP was more recently presented by Manfrin et al. (2004), who approached it as a
simplified version (1 instead of n vehicles) of the generalized Stochastic Vehicle Routing Problem (SVRP).
In their paper, Manfrin ef al. explore the hybridization of the metaheuristic search process by interleaving the
objective function with the one from a closely related problem (the traveling salesman problem - TSP) which
can be computed in much less computation time. Moreover, Manfrin et al. analyze several extensions to the
proposed metaheuristics, and report experimental results with respect to different types of instances. It is
shown that for the instances tested, most metaheuristics perform better when hybridized with the traveling
salesman objective function. Lately, Kyriakidis and Dimitrakos (2007), presented the SVRDRP with
continuous demands, and suggested a dynamic programming algorithm to determine the optimal policy.A
detailed treatment of the Stochastic Vehicle Routing with Depot Returns Problem (SVRDRP) is included in
Chapter 5 of this dissertation.
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The SVRDRP with Multiple Products

This is the stochastic version of the VRDRP with Multiple Products. The challenge is again to identify the
minimum expected cost including the necessary depot returns for vehicle stock replenishment. This case
includes, again, two distinct sub-cases, as described for the deterministic case. Both sub-cases are modeled

and addressed in Chapter 6.

The Stochastic Ex-van with Pickup and Delivery

In this case, neither the demand for the product to be delivered nor for the item to be picked up is known in
advance. This is the stochastic version of the VRDRP with Pickup and Delivery. Again, as in the
deterministic case, an additional decision should be made concerning the quantity to be loaded to the vehicle
each time the vehicle returns to the depot. This is because unnecessarily high stock levels may prevent the
collection of returned items, therefore causing additional depot returns and lower customer service. This

problem is modeled and solved in Chapter 7.

2.7 Contributions of this Dissertation

As described in the previous Section, this dissertation treats a vehicle routing problem of significant practical
value. Several cases of this problem of increasing complexity are modeled and solved. Most of these cases
are posed, analyzed, and solved to optimality for the first time in the literature. Our contributions can be

summarized as follows:

1. For the VRDRP we develop a dynamic programming algorithm (DPA) inspired by the work of Yang et
al. (2000) and solve the problem to optimality in efficient computational times. Problem instances

containing up to 50 customers were solved.
2. For the two cases of the VRDRP with Multiple Products we develop the mathematical models, as well as

new efficient algorithms that solve these problems to optimality. Again, problem instances containing up

to 50 customers were solved.
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3. For the SVRDRP, which has been initially presented and solved by Yang et al. (2000), we present an
analysis of the problem to determine: a) the effect of the variance of the demand on the minimum

expected cost function, and b) the interaction between the mean and the variance of the demand.

4. For the SVRDRP with Multiple Products we pose both cases, the compartmentalized and the unified
load. We analyze the characteristics of each, and we develop novel methods to determine the minimum
expected cost. We also develop the theoretical results that permit one to determine the optimal decision

after serving each customer.
5. Finally, for the SVRDRP with Pickups and Deliveries we define the problem, present its characteristics,
and develop a novel method to determine the minimum expected cost as well as the optimal decision

after serving each customer.

The problems in 2, 4 and 5 above, are presented and solved in this dissertation for the first time in the

literature.
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The Vehicle Routing with Depot Returns Problem (VRDRP)

3.1 Introduction

In this Chapter we present the basic form of the Vehicle Routing with Depot Returns Problem (VRDRP). In
this problem the demand of each customer is known in advance (deterministic). The problem characteristics,
the mathematical model and an efficient solution method initially proposed by Yang ef al. (2000) are

presented. The Chapter concludes with comments on the performance of the solution method.
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3.2 The VRDRP

As already presented in Chapter 2, the VRDRP is a special case of the VRP in which there is only one
vehicle that serves its customers in a predefined sequence delivering a single product. The demand of each
customer is known in advance (deterministic). All distances (travel times) in the network are also known.
The product quantity that can be loaded to the vehicle may not exceed the vehicle’s capacity. The vehicle
serves the customer fully during a single visit; i.e. it visits the customer only if the quantity on board is
greater or equal to the customer’s demand. The vehicle is allowed to return to the depot in order to refill. It is

assumed that service at a customer site as well as reloading at the depot, happen instantly.

Upon completion of service at each customer site, the vehicle has to either (a) proceed to the next customer,
as long as the demand of the next customer is not greater than the remaining stock on board, or (b) return to
the depot in order to reload, and resume its route by visiting the next customer in the sequence. This decision
point is shown in Figure 3.1, in which the vehicle has just served customer-3 and a decision has to be made:
in case (a) the vehicle will proceed directly to customer-4; in case (b) it will first return to the depot to refill,
and will then proceed to customer-4. Note that even though the stock on board the vehicle may be adequate
to serve the next client, a preemptive return to replenish the vehicle’s stock may be beneficial in order to

avoid future returns from a customer site that is further away from the depot.

—
\

\ -
\ - @ o
Customer

Depot

Figure 3.1. The decision the vehicle has to take at each customer point.
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Consider a set of nodes V =10, ..., n}, with node 0 denoting the depot and nodes 1,...,n corresponding to
customers, and a set of arcs 4={(i,i +1), (i +1,0),(0,i +1):ieV —{n}} that join the customers along the route
1>2—---—>n, as well as all customers with the depot. The travel cost (distance) of each arc (i, ) is
denoted by ¢; >0, and the ¢, values satisfy the triangular inequality. We assume that a single vehicle must
serve all customers according to the predefined sequence 1,...,n and that a customer should not be served

twice. The vehicle is at the depot initially and after serving all customers it returns to the depot. It is assumed
that the maximum capacity of the vehicle is equal to Q products. The stock on board the vehicle after serving

customer i-/ is the same with the stock upon arrival at customer i (and before serving customer 7) and equal

to z;;.
Decision Variables: Xiit1 € {0,1} v 1=1,2,...,n-1
xip € {0,1} v 1=1,2,...,n-1
Xoi € {0,1} v i=2,...,n
Objective Function
n—1 n—1 n
Min E = Zci,i+1xi,i+l + Zcfoxio+ Zcmxol‘ (3.1)
i=0 i=1 i=2
Constraints
Xo1 — 1 (32)
Xn0 = 1 (33)
Xi-1i T Xoi = 1 \Y i=2,...,n 3.4)
Xi,i+1+X10:1 \v i=1,2,...,n-1 (35)
Zi.1 = Xoi Q + (1 — X0i) (zia — di-1) \Y =2,...,1n (3.6)
21=Q (3.7)
di<z;<Q \v4 i=1,...,n (3.8)

Constraints (3.2) and (3.3) indicate that the vehicle must leave the depot at the start of the route and must

return to the depot after the completion of the route.
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Constraints (3.4) and (3.5) are also network constraints and relate to the customer nodes. According to Eq.
(3.4) the vehicle will either arrive to the next customer from the previous customer or from the depot, and
according to Eq. (3.5) the vehicle will depart from a customer point either to go to the next customer or to go

to the depot.

Constraints (3.6) to (3.8) are capacity constraints. According to Eq. (3.6) the stock left on board prior to
visiting customer 7 will be either equal to the full vehicle capacity Q, if the vehicle is coming from the depot,
or equal to what is left on board after serving customer i-/. According to Eq. (3.7) the stock of the vehicle
upon arrival at the first customer is equal to its full capacity Q. Finally, according to Eq. (3.8) the stock left
on board after service completion of a customer, should always be kept between the values of the next
customer’s demand and the vehicle full capacity. If the value of the stock on board drops below the value of

the next customer’s demand, a return to the depot for refill is necessary.

3.3 Problem Characteristics

Any feasible route of the vehicle can be denoted by a vector of n elements; each element assumes the values
‘0’ or ‘I’ : u; = 0 represents the case in which after serving customer i, the vehicle will serve customer i+/
without visiting the depot; u; = I represents the case in which after serving customer i, the vehicle visits the

depot, replenishes its stock, and proceeds to customer i+1.

As an example, the vector [0 0 0 1 0 0 0 1] refers to a customer network that consists of eight customer
points. After serving customer 4 the vehicle returns to the depot for stock replenishment. Obviously, after

serving customer & the vehicle returns to the depot in order to conclude its route.

3.3.1 Problem Complexity

If the number of customers in the network is equal to n, then there are 2" possible ‘-1’ combinations
representing a route, since u, = /. In order to identify the subset of feasible combinations, the demand-
capacity restrictions are applied; that is, the demand of all customers included between two subsequent visits

to the depot cannot exceed the total vehicle capacity.
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To further analyze the complexity of the problem, we developed an Exhaustive Search algorithm that
searched the entire solution space exhaustively, identified the feasible combinations, calculated the value of
the objective function for each feasible combination, and identified the optimal solution(s). The steps of the

Exhaustive Search algorithm are given below:

1. Load the customer matrix C
2. Initialize the total distance traveled as Min = oo
3. Do while all possible combinations have not been exhausted:
a. Create the first/next combination as [1 00 ...0]
b. Examine feasibility of this combination and if feasible
1. Calculate total distance traveled (Dist)
ii. If Dist < Min then Min = Dist
iii. If Dist > Min then Min = Min
c. If the combination is not feasible go to step (a)

4. End

A ‘feasible combination’ is one that the sum of the customer demands among two consecutive depot visits
does not exceed the capacity of the vehicle. C is an n*m matrix, where n = number of customers, m = 4.
Column one contains information regarding the number of customers in the sequence. Column two contains
information on the distance of customer i from the depot. Column three contains information on the distance

of customer i from customer i+/. Column four contains information on the demand of customer i.
The exhaustive search algorithm was written in Matlab Version 7.0 and ran on a PC Intel Pentium IV, 1.6

GHz CPU, 1Gb RAM pc. The algorithm was tested on instances with 5 to 20 customers and the results in

computational time are shown in Figure 3.2.
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Figure 3.2. Computational time of VRDRP vs. Customer number.

From this figure it can be clearly seen that the computational time, and, therefore, the problem complexity,
increases exponentially with the number of customers, as expected. Furthermore, beyond 20 customers the

exhaustive search procedure is not practical.

3.3.2 Number of depot returns

An interesting characteristic of the problem is the number of times the vehicle will return to the depot to
reload, in the optimal solution. The minimum number of depot returns is determined by finding the number
of the absolute necessary returns without considering the distance traveled by the vehicle; i.e. the vehicle
returns to the depot only when the stock on board is not sufficient to serve the next customer. This lower

limit is defined as g, and depends strictly on the customer demand vector (d;, d,, ..., d,) and the vehicle

capacity Q.

Let’s now define gy as the number of depot returns included in the best route of the vehicle. Obviously g,
< gres- We investigated the relationship between gp. and g, by creating 10,000 random problems and

solving them to optimality, as follows:
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1. Initiate the iterative procedure for 10,000 problems
2. For each problem create a random customer matrix i.e. random distances among customer points and
depot, and random customer demands
3. Determine g, by deriving the solution that is strictly based on vehicle capacity restrictions; that is the
sum of customer demands between two consecutive depot visits must not exceed the vehicle capacity
5. [Initialize the total distance traveled as Min = oo
4. Dowhile 1 <i<n-gun
a. Do while all possible combinations have not been exhausted:
i. Create the first/next combination which contains gu,+; (1 = 0,1,2,...n) returns to the depot
(including the final return) as [1 00 ...1]
ii. Examine feasibility of this combination and if feasible
1. Calculate total distance traveled (Dist)
2. If Dist < Min then Min = Dist
3. If Dist > Min then Min = Min
iii.  If the combination is not feasible go to step (i)
b. End Do while
c. i=i+l
End Do while
Compare the best solutions identified for all g,;,+; and identify the solution with the shortest distance

Record the shortest distance along with the number of depot returns of step 7

o »® =N

Repeat steps 2-7 for the next iteration

10. Conclude after 10,000 iterations have been completed.

The results of this experiment are shown in Figure 3.3.
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Figure 3.3. The results of the 10,000 experiments with 10 customers

According to these results it appears that the best solution so far contains g, to gmint2 depot returns 95
times out of 100 (95%). Therefore, in an enumerative algorithm that calculates all feasible solutions with
Gmins Emint1, and gui,+2 returns, the optimal solution would be determined with an approximately 95%

confidence level.

3.4 An Efficient Solution: The Dynamic Programming Algorithm (DPA)

The VRDRP is solved to optimality using a dynamic programming algorithm. This is inspired by the work of
Yang et al. (2000) and Manfrin et al. (2004), who presented the dynamic programming formulation for the
Stochastic Vehicle Routing with Depot Returns Problem (VRDRP), where the demands of the customers are

independent discrete random variables with known distributions.

Consider the example customer network presented in Figure 3.4.
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Figure 3.4. Small customer network.

1 and z = 0... Q-d;, be the minimum distance from customer k, from which the

vehicle departs with stock left on board equal to z, to the end of the route.

For k=n:

Viu(z)= Xnp and z=0,1... Q-d, (3.9

For k=n-1:

Vin1(z) = Xno1n + Va(2) ifz > d, (3.10)
= Xp-10 T Xo.n T Va(2) ifz<d, (3.11)

For k=n-2...1:

Vi(z) = Xkt Xok+1 + Vir1(Q-dk+1) if z < dyt (3.12)
= min { Xk T Xok+1 T Vir1(Q-di+1), Xkxr1 T Via1(z-dir1) } ifz > di (3.13)

Note that if z < di+; the only feasible action is to return to the depot in order to refill and then go to customer

k+1.1f z > dy4; then there are two possible actions. If:

Xkl T Vir1(z-dir1) < Xio + Xoxr1 T Vir1(Q-di+1)
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then the optimal decision is to go directly to customer k+/. If the reverse inequality holds, then the optimal

decision is to return to the depot and then go to customer k+/. The total cost of the optimal route is equal to:
Vo(z) = x01 + V1(Q-d) for k=0 (3.14)

The above dynamic programming algorithm determines the route with the minimum cost, following the
reverse customer order. To do so, the minimum cost from each customer site to the end of the route is
computed for all possible values of the vehicle load after the current customer has been served. Having
completed these computations for all customers, the algorithm selects the arcs, which comprise the route

with the overall minimum cost.

For the relevant theory of dynamic programming and some applications (e. g. knapsack problems, production
and inventory models), in which a similar methodology is followed we point to Chapters 1-4 of Smith’s

(1991) book.

The exact steps of the algorithm are described below:

1 For a given customer matrix (distances and demands)

2 Start from the last customer and calculate V,(z) using Eq. (3.9)

3 Continue with the previous customer to calculate all V,,.1(z) using Eq. (3.10) and Eq. (3.11)

4 Continue for all remaining customers (for k= n-2...1) to calculate all Vi(z) using Eq. (3.12) and Eq.

(3.13)

(9]

Compute the total cost of the optimal route using Eq.(3.14).
6 Determine the optimal route

7 End

The optimal route is determined by the values of the decision variables x, that correspond to the values of

Vi(q) used for the computation of the minimum total cost. The algorithm identifies this value for each
customer site and records the decision made. This decision can either be to proceed to the next customer site

directly, or via the depot.
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Figure 3.6. The results of the DPA Algorithm.

As it can be clearly observed in Figure 3.6, the performance of the Dynamic Programming Algorithm proved
to be very efficient, as expected. For problem instances with up to 100 customers the algorithm obtained the
results almost instantly. For 1000 customers the average calculation time is 0.3 seconds. The experiments

were run on a PC equipped with Intel Pentium IV, at 2.4 GHz, and 512 MB of RAM.

3.5 Conclusions

In this chapter we presented the Vehicle Routing with Depot Returns Problem (VRDRP). The objective of
the problem is to minimize cost (distance) while serving all customers in a predefined sequence with a single
vehicle. The analysis of the problem showed that its complexity increases exponentially with the number of
customers. Furthermore, the number of depot returns in the optimal solution g is most of the times
between guin < pest < min+2 Where g, 1s the minimum feasible number of depot returns. Finally, a dynamic
programming algorithm (DPA) inspired by the work of Yang ef al. (2000) and Manfrin et al. (2004) was

developed to solve the problem to optimality in efficient computational times.

34




University of the Aegean Department of Financial and Management Engineering

Chanter 4

Variations of the VRDRP

4.1 Introduction

In Chapter 3 we saw that the optimal routing of a single vehicle, with limited capacity that delivers one
product to n clients according to a predefined sequence, can be determined using dynamic programming. In
this Chapter we propose and investigate two practical variations of this problem: (i) the case of multiple-
product deliveries in which each product is stored in its own compartment in the vehicle and (ii) the case of
multiple-product deliveries in which all products are stored together in the vehicle’s single compartment.
This work is the result of a joint effort with P.Tsiribas of the DeOPSys lab of the University of the Aegean.
The problem formulations as well as the dynamic programming algorithms for the first variation were
developed by the author of this dissertation. The algorithm for the second variation was the result of a joint

effort with P.Tsiribas.
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4.2 Variations of the VRDRP

The general problem setting for both variations is identical to that of the VRDRP; i.e. a single vehicle serves

clients in a predefined sequence. We define below the particulars of the two problems.

Multiple-product Delivery - Compartmentalized load

We assume that the vehicle is divided into K sections and each section is suitable for one type of product

only (see Figure 4.1a); i.e, section j is suitable for product j € {l,..., K}. A typical example of this situation

is gasoline tankers. Let Q; be the capacity of the vehicle for product j, for j=1,...,K,. Clearly,

>.0,=0.

Q1 Q2 Q
Product 1 Product 1
Product 2 Product 2
R Product 3
Q3 (a) (b)
Q=0Q1+Q2+Q3

Figure 4.1. The multiple product extension.

Note that all product quantities are calculated using the same unit of measure e.g. m’ or kg. We declare d i
the demand of customer i € {l,...,n} for product j €{l,..., K}. It is assumed that this demand cannot exceed
the respective capacity of the vehicle, i.e. d, <Q;, forall i =1,...,n. The objective is to identify the nodes

from which the vehicle will return to the depot for stock replenishment in order to minimize the total route

cost. This problem will be addressed hereafter as Problem 1.
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Multiple-product Delivery - Unified load

It differs from Problem 1 only in that the vehicle may carry any quantity for each product je{l,..., K},

provided that the total capacity Q of the vehicle is not exceeded (see Figure 4.1b). This problem will be

addressed hereafter as Problem 2.

4.3 The Solution algorithms

It is possible to design suitable dynamic programming algorithms for the two problems defined in the
previous section. For each problem the dynamic programming algorithm determines the route with the
minimum cost, following the reverse customer order. To do so, the minimum cost from each customer site to
the end of the route is computed, for all possible values of the vehicle load after the current customer has
been served. Having completed these computations for all customers, the algorithm selects the arcs, which
compile the route with the overall minimum cost. We develop these algorithms below separately for each

problem.

4.3.1 Algorithm for Problem 1

Let V.(z,,...,zx),i =1,...,n, be the minimum total cost from customer i to the end of the route, if customer i
has been served and the remaining quantity in the vehicle for product j,1< /<K, is z;, €{0,...,0, —d ,}.

These quantities can be computed by using the following equations (4.1)-(4.5):

V (z,.cs2g)=¢Cp, 4.1)
Cocin V(2 —dyysenszg —dg,) if vjell,....K}:z, 2d,, (4.2)

Vi (Z15eiszg) =

Cn_l’o +cOn+Vn(Ql_dln""7QK_dKn) lf EIJ‘E{I,...,K}:Z./- <djn' (4.3)

Fori=n-2,...,1:
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Cio +Coir1 + Vi1 (O —dy iy Ox —dg i), if 3j€{1,---,K}3Zj <dj,i+1’ (4.4)
Vi(zyyeeoszg )=
min{c;y +¢o 1 + Vi1 (O =dy 15, Ok —dg i)

Covn Va2 —=d ez —dy )}, i Vjell, ,Kpiz, >d (4.5)

Jei+l®

Note that if there exists some j e {l,...,K} such that z, <d, ,,, the only feasible action is to return to the

depot in order to refill and then to go to customer i +1. If z, >d,,, forall je{l,...,K}, then there are two

possible actions. If
Ciim Tt Via(z, — dl,i+1 seees Zg T dK,i+l) SCotCo t Via (O, - dl,i+1 N dK,i+l )

then the optimal decision is to go directly to customer i+ 1. If the reverse inequality holds, then the optimal
decision is to return to the depot and then to go to customer i+1. This case is possible, since due to the
geometry of the route, a necessary return from a “remote” customer site may be avoided by returning to the
depot from a customer site that is “close” to it and loading the vehicle up to its capacity. The total cost of the

optimal route is equal to:
Cop TV(Q —d,yys..s O —dyy). (4.6)

Let x,(z,,...,z,)€{0,]} represent the decision of the vehicle in node ie{l,...,n}. Suppose that

x;(z,,...,zx ) =0 when the vehicle goes to customer i +1 and x,(z,,...,z; ) =1 when it returns to the depot.

It is clear that

X, (2500 2) =1,

x,(z,,....,z,) =1L if 3j€e{l,..., K} such that z;<d for i e {1,...,n—1},

Jei+l?

X,(z,,...,25) € {O,l}, ifVje {1,...,k}: z;2d for i e {1,...,n—1}.

Jei+l?

The steps of the algorithm that determines the optimal policy for this problem are given below.
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1. Compute and store V (z,,...,z,) for all acceptable values of (z,,...,z,) for node n, using (4.1);
store the corresponding value of x, (z,,...,z,).

2. Compute and store V, ,(z,,...,z, ) for all acceptable values of (z,,...,z, ) for node n—1, using (4.2)
and (4.3); store the corresponding values of x, (z,,...,z,).

3. Compute and store for i=n-2,...,1 the quantity V.(z,,...,z,) for all acceptable values of
(z,,...,zy ) for node i, using (4.4) and (4.5); store the corresponding values of x,(z,,...,zy).

4. Compute the total cost of the optimal route using (4.6). The optimal route is determined by the values

of the decision variables x, that correspond to the values of V,(z,,...,z, ) used for the computation

of the minimum total cost.

Attention should be drawn to the fact that the algorithm described above is similar to the one presented in

Section 3.4 of this dissertation.

4.3.2 Algorithm for Problem 2

This problem is transformed to the original VRDRP (i.e. Problem 1 with K =1),by computing the total

customer demand (note that all product quantities are calculated using the same units of measure e.g. m’ or
kg). That way, it can be assumed that there is only one product type, and thus the problem is solved by
implementing the algorithm for the original VRDRP problem. The proposed approach includes 3 steps:

1. Transform the problem to the original VRDRP (Problem 1 with K =1) The total demand d, for

customer { becomes

2. Solve the VRDRP using the dynamic programming algorithm that we described in Problem 1 with
K=1.
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3. Suppose that according to the optimal route the vehicle returns to the depot after visiting the

customers i,...,7, , where m<n and 7, <---<i . Then the quantity of product j e{l,..., K} that the

vehicle must load when it returns to the depot after serving customer i ,r € {l,...,m} must be equal

to idji.

i=i,+1

In Step 3 we identify the stock quantity on board per product in the beginning of the route, as well as the
quantity of refill per product, at each depot return. For each product, and for each sub-route (route between
two subsequent depot returns) we add the demand of each customer site served in the particular sub-route.
The sum of this total demand per product for the sub-route is equal to the optimal stock quantity that the
vehicle should carry during this sub-route. The procedure is repeated for each sub-route until the entire route

is exhausted and all product load quantities per sub-route are identified.

4.4 Implementation and Computational Analysis

In order to illustrate the proposed algorithms of Section 4.3, we present an example for each of these
problems. In both examples the number of customers is equal to 5. Subsequently in both cases, a large
number of problems are generated and solved in order to study the efficiency of the algorithms. The latter
were implemented using Matlab v. 7.0 and ran using a personal computer equipped with an Intel Pentium IV,

2.4 GHz processor and 512 MB of RAM.

4.4.1 Nlustrative Examples - Problem 1

Consider the 5-customer network of Fig. 4.2. The vehicle capacity is Q =10 units and is equally split
between two products (Q; = 0> = 5); the demand for delivery d, ; for each product & (k = 1,2) and customer j

(=1, ...,5), as well as the distances between the nodes c¢;; are given in Fig. 4.2.
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Figure 4.2. 5-customer network for the multiple-product (compartmentalized).

The problem is solved using the dynamic programming algorithm presented in section 4.3.1. Let V,(z,,z,)
and x,(z,,z,) be the minimum total cost and the corresponding decision after customer i €{l,2,3,4,5} has
been served. The remaining quantity in the vehicle is (z,,z,). Clearly, V,(z,,z,) =18, x,(z,,z,)=1 for

z, €{0,...,3} & z, {0,1}. In Tables 4.1-4.4 we provide the results for nodes 1, 2, 3, 4. In these Tables, (z,,z,)
represents the quantity carried by the vehicle after customer i has been served; each cell includes two values:

The first is the value of x,(z,,z,) and the second is the value of V,(z,,z,).

Table 4.1. Results obtained for node 4

z1
0 1 2 3 4
72
0 1;40 1; 40 1; 40 1; 40 1; 40
1 1;40 1; 40 1; 40 1; 40 1; 40
2 1;40 1; 40 1; 40 1; 40 1; 40
3 1;40 1; 40 1; 40 1; 40 1; 40
4 1;40 1; 40 0; 34 0; 34 0; 34
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Table 4.2. Results obtained for node 3

z1
0 1 2 3 4
72
0 1; 41 1;41 1; 41 1;41 1;41
1 1; 41 1;41 1; 41 1;41 1;41
Table 4.3. Results obtained for node 2
z1
0 1 2 3 4
72
0 1; 50 1;50 1; 50 1;50 1; 50
1 1; 50 1;50 1; 50 1;50 1; 50
2 1; 50 1;50 1; 50 1;50 1; 50
3 1; 50 1;50 1; 50 1;50 1; 50

Table 4.4. Results obtained for node 1

72

z1

0; 67

Therefore, the minimum total cost is equal to 14 + 67 =81 and the optimal route is [0,1,1,0,1] (Fig. 4.3).

DEPOT

dy4=1
1 dj4=1
"\ 16
« N dy 5=
‘ < d <=2
/ L5~
/
718
’ o
’ —_--
o

Figure 4.3. Optimal route for the 5-customer multiple-product problem.
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4.4.2 Illustrative Examples - Problem 2

We consider the same example of Figure 4.2 for Problem 2. In this case however the vehicle is not
compartmentalised. Following the steps of the algorithm of Section 4.3.2, first the problem is transformed to

the original VRDRP presented in Section 3.2 (see Fig. 4.4).

Dy =5
Dy =3 3 N ) Dy=2
() i (+)
17 16
Dl—4 ° P 3 4 D5:6
14

Figure 4.4. Transformation of the 5-customer multiple-product route.

According to Step 2 of the algorithm presented in Section 4.3.2, the basic problem is solved using the

dynamic programming algorithm. Let V(z) and x,(z) be the minimum total cost and the corresponding
decision if customer i € {1, 2,3,4,5} has been served and the remaining quantity in the vehicle is z. Clearly,
Vi(z)=18,x,(z) =1 for z€/{0,...,14}. In Tables 4.5-4.8 we provide the results for nodes 1, 2, 3, 4. Again in

these Tables, z represents the quantity carried to by the vehicle after customer i has been served; each cell

includes two values: The first is the value of x;(z) and the second is the value of V,(z).

Table 4.5. Results obtained for node 4

z 0 1 2 3 4 5 6 7 8

1;40 1;40 1;40 1; 40 1;40 1;40 | 0;34 | 0;34 | 0;34

Table 4.6. Results obtained for node 3

z 0 1 2 3 4 5

1;41 1;41 1;41 1;41 1;41 1;41
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Table 4.7. Results obtained for node 2

3 4

5

I;

50 1;50

0; 44

0; 44

0; 44

Table 4.8. Results obtained for node 1

z

6

0; 64

The minimum total cost is equal to 14 + 64 = 78 and the optimal route is [1,0,1,0,1] (see Fig. 4.5).

Figure 4.5. Optimal route for the 5-customer multiple-product problem.

In Table 4.9 we give, according to Step 3 of the algorithm, the quantities of the products 1, 2 that the vehicle

must load when it leaves the depot a) at the beginning of the route and b) after serving customers 1 and 3.

Individually for each product, and for each sub-route (route between two subsequent depot returns) we add

the demand of each customer site. The sum of this total demand per product for the particular sub-route is

equal to the optimal stock quantity that the vehicle should carry during this sub-route. The procedure is

repeated for each sub-route until the entire route is covered and all optimal product load quantities per sub-

route are identified.
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Table 4.9. Loads for the 5-customer multiple-product problem

Product 1 Product 2
Initial Load 1 3
Load after Customer 1 2 6
Load after Customer 4 3 5

Notice that when the vehicle leaves the depot a) at the beginning of the route and b) after serving customers
1 and 3, it is not loaded to its full capacity. This is due to the fact that according to the algorithm, the exact
quantity of each product that the vehicle must carry for each sub-route is known. We therefore state that the
algorithm can potentially create further cost savings, by preventing unnecessary loading / unloading of

products at the depot.

According to the solution results, the minimum distance for the compartmentalized case was equal to 81 and
the optimal route is [0,1,1,0,1] (Fig. 4.3). Respectively, the minimum distance for the unified load case was
equal to 78 and the optimal route is [1,0,1,0,1] (Fig. 4.5). Both routes include 2 returns to the depot for refill in
order to be able to fully satisfy the total demand. But the route of the unified load case makes the first depot
return after serving Customer point-1 instead of after Customer point-2, therefore achieving a cost saving.
This was possible due to the product quantity loading flexibility that the unified load case provides. It
therefore becomes clear that it would be more cost effective to operate a fleet of unified load vehicles, as
long as this is possible (according to the product types, if they can be stored at the same compartment, if they

can be mixed, etc.).

4.5 Algorithm Performance Analysis

In this section we analyze the performance of the algorithms developed to solve each of the problems.
For the case of compartmentalized load (Problem 1) 3000 problems were created and solved. The number of

customers in these problems ranged from 5 to 50, while the number of products was equal to 2, 3 and 4. The

problems were formulated in the following manner: For each problem, a nx(3+ K) matrix was created,
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where n denotes the number of customers (nodes) and K the number of product types. This matrix defines the
network of the problem. Specifically, the first column relates to the customers, starting from customer / until
customer n. The second column represents the distance of each customer from the depot, and the third the
distances between customers according to the planned sequence of customer visits. The remaining columns
represent the demand for each product type (K number of columns). The user provided the values of n and K,

and the matrix values were generated randomly respecting the problem restrictions.

For the case of unified load (Problem 2) we generated 2000 problems following the procedure described
above. In this case the number of customers ranged from 5 to 1000, while the number of products ranged
from 2 to 5. All problems were solved using the algorithms presented in Section 4.3 and the computational
times for each case (Problem 1 and Problem 2) are shown in Figures 4.6 and 4.7, respectively. From these
results it is apparent that the complexity of the case of compartmentalized load is significantly higher than

that of the case of unified load and so are the computational times.

Furthermore:

» The computational time for Problem 1 increases with a rate less than exponential with respect to the

number of customers, while for Problem 2 it increases linearly.

» For Problem 1, the computational time increases exponentially with respect to the number of product
types. This is due to the increase of the number of additional combinations to be examined for each

additional product.

1000 7

100

1
0 — ——2 Products

1+

/ 4 Products
0.1

0.01 ~

=——— 3 Products

Computational time (sec)

5 10 15 20 25 30 35 40 45 50
Number of Customers

Figure 4.6. Computational time for Problem 1.
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Figure 4.7. Computational time for Problem 2.

4.6 Conclusions

In this Chapter we presented two practical variations of the VRDRP: (i) The case of multiple-product
deliveries when each product is stored in its own compartment in the vehicle and (ii) the case of multiple-
product deliveries when all products are stored together in the vehicle’s single compartment. The
mathematical models, as well as efficient algorithms that solve the problems to optimality were developed
and presented. Since these algorithms are optimal, neither further validation (e.g. Vs. Exhaustive Search
Algorithm) nor comparison with other heuristic/metaheuristic methods is required. Both problems were
approached by appropriate extensions of the dynamic programming algorithm presented in Section 3.4 of
this dissertation. Based on the experimental results of the multiple-product problem, it has been
demonstrated that the complexity of the compartmentalized case is significantly higher from that of the

unified load case.
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The Stochastic Vehicle Routing with Depot Returns Problem (SVRDRP)

5.1 Introduction

In this Chapter we present and analyze the stochastic version of the Vehicle Routing with Depot Returns
Problem (SVRDRP). In this problem the customer demands are independent random variables with known
distributions. The SVRDRP has been initially presented and solved by Yang et al. (2000). The purpose of the
chapter is to analyze the problem with respect to critical parameters that characterize the randomness of the

demand. This lays the foundation for the cases presented in the following chapters.
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5.2 The Stochastic Vehicle Routing with Depot Returns Problem (SVRDRP)

In the SVRDRP, the vehicle has been tasked to start from the depot, serve the customers at a predefined
sequence and return to the depot. The demand of each customer is not known in advance, and it is revealed
when the vehicle arrives at the customer site. Note that this situation is quite realistic. For example in the Ex-
van case, the driver also acts as a sales person, negotiating with the customer the order quantities; thus these
quantities can not be assumed to be known a priori. The customer demands are modeled by independent
random variables with known statistics (derived from historical data). The distances, (or travel times), among
all points in the network (depot and customer sites) are known. The product quantity loaded onto the vehicle
is up to its capacity, which cannot be exceeded. The vehicle returns to the depot in order to refill as needed.
It is assumed that service at a customer site (as long as there is enough stock to satisty the demand in full), as

well as refill at the depot occur instantly upon arrival of the vehicle at each location.

Upon completion of service at each customer, the driver has to make a decision: (a) Proceed to the next
customer, as long as the probability of being able to fully satisfy the demand of the next customer is
acceptable and the return distance is favourable; (b) return to the depot in order to refill, and resume the route
by visiting the next customer in the predefined sequence. If the vehicle proceeds to the next customer but the
actual demand of this customer turns out to be higher than the stock carried on board, the vehicle will unload
its entire load, return to the depot to refill, and return to the customer to fully satisfy its demand (see Figure

5.1).

According to the example of Fig. 5.1, after serving customer 3 the vehicle’s driver is faced with a decision:
Either proceed directly to customer 4 following route (a), or via the depot following route (b). In case (a), if
the actual demand of customer 4 turns out to be higher that the stock in the vehicle, then the customer’s
demand will be partially satisfied and a recourse action will be taken shown as route (c); i.e. the vehicle will
return to the depot to refill, and proceed back to customer 4 to satisfy the remainder of this customer’s

demand.
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Figure 5.1. The decision by the vehicle’s driver at each customer site.

To formalize the model of the SVRDRP, consider a set of nodes V' =1{0,...,n}, with node 0 denoting the
depot and  nodes L...,n corresponding to  customers, and a set of arcs
A={(j,j+1),(},0),(0,j+1): jeV —{n}} that join the customers along the route 1 > 2 — --- > n, as well as
all customers with the depot. The travel cost (distance) of each arc (i, j) is denoted by ¢, > 0. The ¢, values

satisfy the triangular inequality. The network constraints of Egs. (3.2) — (3.3) of Chapter 3 also hold here. It
is assumed that the maximum capacity of the vehicle is equal to Q and the stock on board the vehicle upon
service completion at customer j is equal to z. The random demand at customer j is given by &, where P(&; =
&) is known for every customer j and every integer k > 0. Also & 2> 0. Taking into consideration that the
Vehicle Routing with Depot Returns Problem (VRDRP) is NP-hard, its Stochastic version (SVRDRP) is also
NP-hard and significantly more complex (Kall, 1992).

According to Yang et al. (2000), in order to identify an optimal route for a single vehicle, it is first necessary
to develop an efficient procedure to evaluate a particular route, that is, to find its expected cost under an
optimal restocking policy. Upon service completion at customer j, let the vehicle carry a remaining load z,
and let fj(z) denote the minimum expected value of the cost from customer j onward. If S; represents the set
of all possible loads that a vehicle can carry after service completion at customer j, then, fj(z) for z € §;

satisfies the following dynamic programming recursion (Yang et al. (2000)):
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Cigtt+ D fin=Ep g+ D12 0+ 1 (E+0-EDp s (part a)
k& <z k& >z
fi(z) = min (5.1)
Cio T Cojr1 D f,4(0-¢5)p j+1,k} (part b)
k=1

with the boundary condition:

Jn(2) = cno zes, (5.2)

In Eq. (5.1) part (a) in the minimization represents the expected cost of going directly to the next customer. If
& < z the vehicle can fully satisfy the demand — this is represented by the first term of part (a). On the other
hand if & > z the vehicle cannot fully satisfy the demand of the customer, and has to execute a round trip to
the depot for stock replenishment - this is represented by the second term of part (a). Part (b) of Eq. (5.1)
represents the expected cost of the restocking action. Dynamic programming is used to recursively determine

the optimal policy.

Note that:
= part (b) of Eq. (5.1), i.e. fj(2) (z), 1s independent of z.
* Yang et al. (2000) have shown that part (a) of Eq. (5.1), i.e. f}.(l)(z), is a monotonically decreasing

function; i.e.:

ifz; >z, then fj(l) (z)) S fj(l) (z))

The formal proof is given in this reference and Appendix A. Based on these two facts Figure 5.2 shows the

typical variation of fj(l) (z)and fj(z) (z) with respect to z. From this Figure it is clear that if Z_,-* is the
intersection point of fj(l)(z) and fj(z)(z) then

fj(z) (2) if z<z

fiz)= (5.3)

@ if z>z
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Thus, the quantity z_,-* represents a threshold below which, the vehicle should return to the depot and reload. If

the vehicle’s load after serving customer j is above this threshold, then the preferable action is to continue to

the next customer directly. At each stage of the dynamic programming algorithm fj(z) (zyof Eq. (5.1) is
computed. Then fi(l) (z) 1s computed in descending order of z until its value exceeds the value of f/.(2) (z)-

The last value of z for which fj(l) (z) < fj(2) (z)is the threshold zj* for customer ;.

»

Cost ]

)

G)

Zj Z

Figure 5.2. The typical variation of the two parts fj(l) (z) and fj(z) (z) of Eq. (5.1) with respect to z.

5.3 Analysis of the SVRDRP

In order to further explore the effect of randomness on the minimum expected cost, we analyzed the effect of
the variance of the demand (demand randomness) on cost, as well as the effect of the interaction of the
variance and the mean demand. Note that it is clear that increasing the mean demand will increase the
expected cost of the route. This is because the capacity of the vehicle is constrained and more returns to the

depot are necessary to satisfy the increased demand.

5.3.1 Effect of Randomness

In order to obtain a better insight on how the standard deviation of the random demands affects the cost of
the route, the following experiment was designed as shown in Table 5.1 below. Column 1 of this Table

identifies 5 cases of random demand for the 4 customers of Column 2. Columns 3-8 present the probability
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mass functions for z = 0,...,5 per customer per case. Columns 9, 10 present the average of the mean demand

X per customer and the variance s of the demand per case. Finally, Column 11 presents the result of the

Yang et al. algorithm per case. Note that in all 5 cases the average mean demand per customer x set remains

constant while the variance increases.

Table 5.1. Randomness Analysis experiment.

Yang et al
Cases of b dfor it Average Optimal solution
Random |¢\,stomers emand for ftem Mean .
Demand = Variance Minimum
(x) Expected Cost
0 1 2 3 4 5
1 0 0o | 1] o 0 0
1 2 0 1 o] o 0 0 , es0 o8
3 0 0o | o | 1 0 0
4 0 o | 1] o 0 0
1 0 ] 01 J08] 01 | 0 0
2 01 | 08 |01] o0 0 0
2 : : o T o8 T o4 1o 2 s~ 0,45 72,36
4 0 | 01 |08] 01 | 0 0
1 01 ] 01 [06] 01 | 01 | 0
2 02 | 06 |01] 041 | 0 0
3 3 0 | 01 |01] 06 | 01 | 04 2 s~1 75,49
4 01 | 01 |06] 041 | 01 | 0
1 015 ] 02 [03] 02 | 015 ] 0
2 035 | 03 |02 015 | o0
4 3 0 | 015 02| 03 | 02 | 015 2 s~1.26 7,87
4 015 | 02 |03 ] 02 | 015 | o0
1 02 | 02 [02] 02 | 02 | 0
2 04 | 02 |02] 02 | o 0
5 3 0 | 02 |02] 02 | 02 | 02 2 s~141 79,52
4 02 | 02 |02] 02 | 02 | o
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The solution with s = 0 has been obtained with the algorithm presented in Chapter 3. The solutions with s > 0

have been obtained using the Yang et al. algorithm presented in the current Chapter.

=0

% difference with s

0 0,447 1 1,41

Figure 5.3. The relation between the value of s and the minimum expected cost of the route.

Figure 5.3 shows the percent increase of the minimum expected cost of the optimal solution, with respect to
the deterministic case (s = 0) as a function of s. From this Figure it is clear that the expected cost of the route
increases almost linearly with the variance of the demand. Thus, in the Ex-van business case, the consistency
of Sales affects the distribution costs directly. Customers with inconsistent demand may lead to high

distribution costs.
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5.3.2 Mean — Variance Interaction

In this Section we investigate the interaction between the mean and the variance of the demand; that is,
whether an increase of the mean will change the effect of the variance shown in Section 5.3.1. To analyze

this we performed two additional experiments for the 4-customer case of Section 5.3.1 and for the cases of s
=0 and s = 1.4. For both new experiments the average mean demand is equal to 1 (; = 1), lower than that of

Table 5.1 (; = 2). The data are shown in Table 5.2.

Table 5.2. Mean Analysis experiment.

Yang et al
Optimal solution
Cases of Demand for item A\n/nerage
Random |Customers e=an Mini
Demand (x) Variance inimum
Expected Cost
0 1 2 3 4 5
1 0 1 0 0 0 0
! i (1) 8 (1) 8 8 8 1 (s=0) 60
4 0 1 0 0 0 0
1 0,4 0,2 0,2 0,2 0 0
2 2 0,6 0,2 0,2 0 0 0 ) ” 67 o1
3 0,2 0,2 0,2 0,2 0,2 0 (s=1,41) ,
4 0,4 0,2 0,2 0,2 0 0

The results are shown in Figure 5.4. From this Figure it is clear that there is an interaction between the mean
and the variance of the demand; i.e. the percent increase of the minimum expected route cost for the low
average mean demand case (11.6 %) is lower than the percent increase for the high average mean demand

case (16.7%). That is, the randomness affects the expected cost more in vehicles with lower capacity.
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Expected Cost increase

== High average Mean (=2)
=—&—|ow average Mean (=1)

0 s 1,41

Figure 5.4. Mean-Variance interaction.

5.4 Conclusions

In this chapter we presented the Stochastic Vehicle Routing with Depot Returns Problem (SVRDRP). The
objective of the problem is to minimize the expected travel cost (distance) while serving all customers in a
predefined order with a single vehicle. First, the problem was analyzed to determine the effect of the
variance of the demand on the minimum expected cost function. It was found that the expected cost of the
route increases almost linearly with the variance of the demand. Thus, in the Ex-van business case, the
consistency of Sales affects the distribution costs directly. Secondly, the problem was analyzed in order to
determine the interaction between the mean and the variance of the demand. It was found that this interaction
exists; i.e. the percent increase of the minimum expected route cost for the low average mean demand case
(11.6 %) is lower than the percent increase for the high average mean demand case (16.7%) in the example.
This interaction is reasonable, since the randomness affects the expected cost more in vehicles with lower

capacity. Therefore, no further statistical analysis is warranted.
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Multiple Product Extensions of the SVRDRP

6.1 Introduction

In this Chapter we extend the Stochastic Vehicle Routing with Depot Returns Problem (SVRDRP) to address
the case of distributing multiple product types. In line with Chapter 4 we address two cases;
compartmentalized and unified load. The characteristics and the mathematical formulations of the two
problems are presented. New algorithms are developed to solve both problems. The performance of these

algorithms is analyzed by solving a large number of sample problems per case.
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6.2 Multiple Product Delivery: Compartmentalized Case

In the business model addressed by this case, the vehicle carries different types of products, each within its
own compartment. Thus, the capacity of the vehicle for each product is predefined and cannot be altered. A
characteristic example is gasoline transport, in which the vehicle’s tank is compartmentalized in order to

carry various types of gasoline (unleaded, premium, etc.).

As before, the sequence of serving the customers is predefined. In this case, of course, the customer demand
should be satisfied for all products. The demands per customer per product are independent discrete random
variables, with known probability mass functions. The latter are derived in practice from historical data. The
vehicle is allowed to return to the depot in order to refill. At the depot, all compartments may be refilled up
to their capacity. Exactly upon completion of service at each customer site, the vehicle’s driver has to make
an identical decision with the one already discussed in Section 5.2, namely to continue towards the next

customer or return to the depot.

The vehicle may have to visit a customer twice, if it cannot fully meet the demand of this customer during
the first visit. It is assumed that service at a customer site and refill at the depot happen instantly upon arrival
of the vehicle at the respective location. The objective of the problem is to serve all customers (replenish

their stock of all items) and minimize the expected travel cost.

6.2.1 Dynamic Programming Formulation

We assume that the vehicle is divided into K sections and each section is suitable for carrying one product

type only (see Figure 4.1a). Let O, be the capacity of the vehicle for product ie{l,...,K}.Clearly,

Zil Q. = 0. Note that all product quantities are calculated using the same unit of measure e.g. m” or kg. Let

z; represent the stock on board of each product after serving customer j.

We declare &; the stochastic demand of customer je{l,...,n} for product type iefl,...,K}. & follows a

discrete distribution with m; possible values, & b o, &™ and probability mass function:
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Pl =P(& = &) (6.1)

For simplicity, but without loss of generality, we will develop the dynamic programming formulation for two

product types (the formulation for 3 product types is presented in Appendix B).

Let f;(z,2,) denote the total minimum expected cost from customer j onward if the vehicle, after serving

customer j, carries quantities z; of product type-1 and z, of product type-2. If S; represents the set of all

possible loads that a vehicle can carry after serving customer j, then f(z,,z,)for (z;,z2) e §; satisfies the

dynamic programming recursion:

k, fyy 2
[ Cj i+t Z ij+l(zl_§ 222 =€ )P jsik, Pk, T )

k&M <z ky: 8 <2,

+ z Z [20.;41,0 + [z + 0 - fk' N )]P}H,k, p?ﬂ,kz +

k&M >z ki8R <z,

DD [2cj+1,0 +f121(Q1,20 + 0y — " )10;41,1«1 Pk, * > part (a)

kN <z ky:ER2 > 2,

A

k AN N 2
+ Z Z[2cj+1’0 +fj+1(21 +0, -2+ 0, =& ‘)10j+1,k,Pj+1,k2)

k&M >z k82 >z,

(6.2)
Ciotco it z z Ji(Q - &h 0) - &k )P}+1,k, p?ﬂ,kz part (b)
k=1 ky=1

In Eq. (6.2), part (a) represents the expected cost of going directly to the next customer, whereas part (b)
represents the expected cost of the restocking action. Part (a) consists of four summation terms (the four

rows), which correspond to the four cases of Figure 6.1.
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A Z) A
Z2
Q
B A
k
¢ B A
£
D C
D C
é:kl Z] §k1 0 z
Part (a) - Compartmentalized Part (b) — Unified load

Figure 6.1. The solution space per customer point (for (a) compartmentalized and (b) unified load).

The first sum of part (a) represents the expected cost incurred if the stock of both items z; and z; is sufficient
to fully satisfy the demands & and &% of customer j+7 (Area A in part (a) of Figure 6.1). The loads of the

vehicle before and after serving customer j+/ are schematically represented above the respective arcs (the

demand of customer j+/ is presented above the node) in Figure 6.2. The stock left on board after serving

customer j+1 is (z; - £ ) >0 and (z; - £ ) >0 respectively.

Z1,2» z)- EN 7y - ER

v
v

Figure 6.2. The case that the demand is fully satisfied: z,>& kg, >£ b

The second sum of part (a) represents the expected cost incurred if the vehicle proceeds to the next customer

directly and the stock z; is not sufficient to fully satisfy the demand &% of the next customer, while the stock

2, is sufficient to fully satisfy the demand & (Area B in part (a) of Figure 6.1). The path of the vehicle and

the corresponding vehicle loads are shown in Figure 6.3.
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71,23 gh, gl Qi —(&"-21),Q

»
>

0, z, %
01 0:

Figure 6.3. The case in which z,< & and z, >£% |

v

In this case, the vehicle will visit customer j+1, it will fully satisfy demand &% for product type-2 but will
partially satisfy demand &% for product type-1; thus, it is required to return to the depot for stock
replenishment. The stock left on board after serving customer j+/ for the first time is 0 and (z, - &%) >0,

respectively. The stock left on board after serving customer j+1 is Q; — (&% - z;) for product type-1 and Q,

for product type-2 respectively.

The third sum of part (a) represents the expected cost incurred if the stock z; is not sufficient to fully satisfy
the demand & of the next customer, while the stock z; is sufficient to satisfy demand &% (Area C in part (a)

of Figure 6.1). The path of the vehicle and the corresponding vehicle loads are shown in Figure 6.4 below.

The load balance is analogous to the previous case.

ko ek
71,22 £ Q1.Q— (&% -2))

»
>

z- (f%
Ql’ QZ

Figure 6.4. The case in which z, < £* and z,>&"

v
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The fourth term represents the expected cost incurred if the stock of both items z; and z; is not sufficient to
fully satisfy the demands &% or £% of the next customer (Area D in part (a) of Figure 6.1). The path of the

vehicle and the corresponding vehicle loads are shown in Figure 6.5 below.

k, k,
. E 8 Qo (), Qo (£ - 20)

»
2 »

0, 0>

Figure 6.5. The case in both z,< £ and z, < &% .

Part (b) of the minimization equation, Eq. (6.2), represents the expected cost incurred if the vehicle proceeds
to the next customer j+/ via the depot and, therefore, the stock of both items on board z; and z, is
replenished to Q; and Q, respectively. Due to the fact that this is a proactive depot return, the values of z;
and z, do not affect the result, which is thus independent of z; and z,. The path of the vehicle and the

corresponding vehicle loads are shown in Figure 6.6 below.

k, k,
TS Qg gt

v

71,2

Figure 6.6. The proactive depot return case.
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6.2.2 Optimal Routing Policy

The expected value of the minimum expected cost can be estimated using Eq. (6.2). However, in order to
develop the policy which leads to achieving this minimum expected cost we will extend the threshold

theorem presented by Yang et al. (2000) to multiple dimensions.

LEMMA 1.
Jiz1, 22) < fi(Q1, OQz)+ 2¢cqp forall zj, z; € §; (6.3)
Proof. From Eq. (6.2) we obtain:
JiZ1, 22) Sejg+eg i+ Z ijn Q- &M, 0, - &k )P}+1,k, p12'+1,k2 (6.4)
k=1 k=1

Forz; = Q; and z; = O part (a) of Eq. (6.2) is always less than or equal to part (b) since ¢; ;,; <c; o +cq 415

therefore:

m . m

fj(Qb QZ) = Ci T z ijﬂ (Ql - fkl O _sz )p}'+l,kl p?+l,k2 (65)

k=1 k=1

taking into consideration that the last three terms of part (a) of Eq.(6.2) become zero.

Substituting Eq. (6.5) in Eq. (6.4) results in:
Jiz1,22) Sc;p + o, i1 +1F(01,00) ¢ ]

Scejotleg e, ial+fi(Q1.02) —¢; il < 2¢;0+ f;(01,0,) QED
Consider z,",z, the item quantities on board after serving customer j.

THEOREM 1: For each customer j, there exists a threshold function h; (z1 .25 ) =c ;» such that the optimal
decision, after serving customer j is to continue to customer j+1 if h;(z;,z,) 2 ¢; or return to the depot

otherwise.
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Proof: We will first show by induction that for all (z;,z;) € S, fi(z1,z2) 1s a non-increasing function. That is,

forz;, z; € Sjand 04, 0,20

Ji(zi+01, 22%03) < fizy, 22) (6.6)

This relationship is true for the last customer n, where f,(z;,z;) = ¢y is independent of (z;,z,). Hence f,(z;,z5)

is monotonically non-increasing with respect to (z;,z;) € S,. We will now prove that, if f.;(z;,z5) is

monotonically non-increasing with respect to (z;,z2) € Sj+;, then fj(z;,z5) is also monotonically non-increasing

with respect to (z;,z;) € S;. Let Hj(z;,z;) and H'j(z;,z;) denote the values of part (a) and part (b) inside the

minimisation in Eq.(6.2).

Let:

Hi(z}, z2) = H;’(zl,zz)+H?(zl,zz) +H_']?(zl,zz)+H;?(zl,zz) (6.7)
where:
Hj(z1,2;) = ¢+ z Zf_j+l(zl —Eh ) &k )P;H,kl p?+l,kl (6.7.1)

k&N <z ky 8 <2,

b _ k, 1 2
H(z,2z;) = z Z[2cj+l,0+fj+l(zl+Ql_§ ’QZ)lvj+l,klpj+l,k2

k&M >z kg ER <z,

c _ k, 1 2
Hi(zy,z;) = z Z[2cj+1,o + 701,22+ 0, =& )1U_j+l,k] Dj+ik,

k&M <z k£ >z,
1 _ [2 3 k, 101 2
j(z1,22) Z Z Cio [z +01 =8, 20+ 0y =8P P,
k&M >z k82 >z,

If we expand each one of the last three terms taking into account the regions of Figure 6.7 we obtain:

H? (z1,22) = Z Z [20.;41,0 + iz + 0 - 4,0, )]P}H,k, p?ﬂ,kz (6.7.2)

kyizy <&M <246, ky 182 <z,

+ z Z [20.1'4—1,0 + iz +0 - fk' o)) )1”;'+l,k, p?+l,kl

kyizy+6,<EM k&R <z,
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Hj(z1,2) = Z Z[zcjﬂ,o +[i(Q1,2,+ 0y —sz)]P}H,k, p?ﬂ,kz (6.7.3)

k&M <z kyiz,<ER <2, 46,

* Z Z [2cj+1,0 + /(@2 + 0y - &k )10;+1,k, P12'+1,k2

k£ <z ky iz, +5, <&

d _ k k|1 2
Hj(z1,25)= Z Z[zcj+l,0 + i@ +0 -8, 240, =& 2)]pj+1,k,pj+1,k2
kyizy <EM <z 468, kyizy <X <2, 46,
n [2 ik ek ]pl 2
Ciotfin@+0 =820+ 0, =8 )Pk Pisik,

kyizy+8,<EMkyiz, <2 <z, 46,

" [2 ek, _ sk, 101 2

Cirot iz +0 =&,z +0, = &) 1k Pj+1k,
kyiz, <EM <z 46, kyiz, 465, <ER
k ko |1 2
+ z Z[zcj+1,0+fj+1(zl+Q1—§ L2+ 0y =& 2)]pj+1,klpj+l,k2 (6.7.4)

kyiz 48, <EN ky iz, +6, <R

Q
(c2) (da) (d3)
Zy10;
(c) (d1) (d2)
z
(a) (b1) (b2)
R —

Z] z;+0;

Figure 6.7. The definition space of H(z,, z,).

Similarly Hj(z;+d;, z>+0,) can be written using Figure 6.8 as follows:
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FI](ZJ+5], 22+52) = H_?‘(Zl +81,Zz +62)+H?’(Zl +61,22 +82)+H§’(Zl +81,Zz +62)+H;{‘(Zl +81,22 +82)

(6.8)
If we expand each one of the above terms taking into account the regions of Figure 6.8 we obtain:
' _ k kyy ol 2
Hi(z+81,25 +8;)=¢; g + Z ij+1(zl +01 =82y + 6, <) Pk P,
kN <z ky:ER2 <2,
k kyy 1 2
+ Z ij+1(21 +01 =825 8, =) Pk Pk,
kyiz <&M <z, 46, ky iR <2,
k, ko1 2
+ z ijﬂ (21 +6, =&, 23 + 6, =€) Plsik,
&M <z kyiz, < <2465,
k kyy 1 2
+ Z ij+1(21 +0) =&, 2y 03 €7 )D i1k Pk, (6.8.1)
k2 <N <248, kyiz, <2 <2, 46,
b _ J 1 2
Hj(2)+81,25 +87) = Z Z[zcjﬂ,o + i +06+01 =670y )]Pj+1,k, P+, (6.8.2)
k&M >z 468, kyER2 <2,
k 1 2
+ z Z [ch+l,0 + @ +6,+0 &7 ’QZ)]ij,k] Djsk,
k&N >z 48,k iz, <2 <2, 46,
: _ k|1 2
HS (z)+81,2, +8,)= 2[20j+1,0 + Q1,2 +6, + 0y =6 2)]Pj+1,k,l7j+1,k2 (6.8.3)
k&N <z k182 > 2,45,
[N 2
+ Z Z [2Cj+1,0 + [0,z +6,+ 0, =& )1Uj+1,k, Pj+1,k,
k2 <EM <z 46k, £ >z, 46,
d' _ k ko |1 2
Hj (21 +81,25 +85) = Z Z[zc_j+l,0+fj+l(zl+5l+Ql_§ 2 +6,+0,-¢ 2)]pj+l,klpj+l,k2
kM >z 48,k ER2 > 2,46,
(6.8.4)
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«sz A
Q2
(c') (c) (d)
z)10;
(@'4) (a'3) (b'2)
z2
@) (a"2) (b'1)
>
zZ] Z] +51 Ql é: :

Figure 6.8. The definition space of H;(z;+6,, z,%6,).

Subtracting the terms that correspond to the same nine regions of Figures 6.7 and 6.8 we obtain:

Hj(z), z) — Hj(z/+0), z:+02) =

lHJq(zl,zz)—Hj" (z; +8;,29 +62)J+lH?‘ (zl,zz)—H}l‘2 (z1+8,2, +62)J+lH?2 (zl,zz)—H?‘l (z1+8;,2, +62)J+
+[H;." (21,25) - H " (21 +81,2; +52)]+ [H;’ (21,25) - H (2, +81,2, +52)]+[sz (21,25) - H* (2, +81,2, +52)]+
[Hj.z (21.22)—H S (2, +81.2; +52)]+ [Hj” (21.29)—HS* (2 +51.2, +52)]+[Hj.’3 (z1.25)~HY (2, +8), 2, +52)]=

_ k iy 1 2
=lcj Tt Z ij+1(21 =872y C)P ik Pk,

k&M <z by 82 <2,

k kyy o1 2
—Cj T z ij+1 (z)+61 =& .2 + 0y <) D1k Pk,

k&R <z ky i8R <z,
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k 1 2
* )y > [2cj+1,0 + iz +01-¢1.0, )].Uj+1,k1 Dk,

kyiz <&M <z, 46, ky: 42 <z,

k, kyy o1 2
- Z ij+1(z1 +01 =&, 2y + 03 =€ )P i1k Plstk,

kyiz <EM <z 48k, ER2 <z,

* Z Z [ch+1,0 + Sz + 0 - 5,0, )1U;+1,k, P12'+1,k2

kyiz +6,<EM kyiE2 <z,

- Z Z [zcj+1,0 + (2 +0+ 0 - &k ,Qz)]P}ﬂ,k, P?ﬂ,kz

k&M >z 46, kyER2 <2,

NN 2
oD 2[20_;+1,0 + [0,z +0, - ¢ )]Pj+1,k, Djsik,

&N <z kyiz,<E <2, 46,

K kyy o1 2
- Z ij+1(21 +01 =&, 2y 03 =€ 7 )P ji1k Plsrk,

k&M <z kyiz,<ER2 <2, 46,

k ko |01 2
+ z Z[zcjﬂ,o + iz + O =&, 2+ 0y &7 )]Pj+1,k,l7j+1,k2

iz <N <248, kyi2, <EM2 <2, 46,

k kyy o1 2
- Z ijn (21 +61 =& .22+ 6, <57 )P ik Pk,

kyiz <&M <z 46, kyiz,<EX <2, +6,

k, k|1 2
+ Z Z[zcjﬂ,o + i@ +0 -8,z + 0, = &7 )]Pj+1,k, Pk,

iz +8,<EM kyizy <2 <2, 45,

- Z Z [2cj+1,0 + (7 + 6+ 0 - £5.,0, )1U;+1,k, P12‘+1,k2

k&M >z 46, kyz, <2 <2, 45,

ko] 2
oD Z[2Cj+l,0 + [0,z + 0, =& )1”j+1,k, Djsik,

&M <z kyiz, +8, <&

- Z Z [2Cj+1,0 +[i1(01,2, +6, + 0 — gk )10;41,1(, 17]2'+1,k2

k&M <z by 82 > 2,45,

68




University of the Aegean Department of Financial and Management Engineering

K [N 2
+ Z 2[20141,0 +fj+1(21 +0,-8",2,+0, =& )1Uj+1,k1pj+1,k2

kyiz, <&M <z 46, kyiz, +6, <&

- Z Z [2Cj+1,0 +f41(01,2, +6, + 0y — &gk )10}41,1{1 p?+1,k2

kyiz <EM <z 48, ky:EM2 > 2,45,

K SN 2
+HooY Z[2Cj+1,o + iz +0 =87,z 40, =& )]Pj+1,k, Dj+i,

k2, +6,<EM kyizy +6,<ER

- Z Z [2Cj+1,o + [z +6+ 0 - égk' 2y + 0, + 05 - égkz )1U}+1,k1 P?n,k2 (6.9)

ki EM >z 48, ky:ER2 > 2,46,

In Eq. (6.9) we can distinguish two types of terms. The first type includes the first, third, sixth, seventh,

eighth, and ninth terms. Considering the first term we have:

H?(ZI,ZZ)—H;I'] (Zl +61,22 +62) =

= Z Z[fj+1(21 —&h Lz, —égkz)—fjﬂ(zl +8, —&h 2z, +8, - &R )]P}+1,k, p?+1,k2

k&M <z kyiEt <z,
Since f;+;(z;, z2) is monotonically non-increasing, this term is non-negative. Similarly we can show that the

differences corresponding to the third, sixth, seventh, eighth, and ninth terms are also non-negative.

The second type of terms includes the second, forth and fifth terms. Considering the second term we have:

H?] (Zl,Zz)—H}l‘z (Zl +81,22 +62):

= Z Z[zcj+1,0 + [z + 0 - &k ,02) = [z + 6 - &k 12y + 0, — &t )10}41,1{1 p§+1,k2

kyiz <EM <z +8,ky:ER2 <z,

Recall that from LEMMA 1:
fiz1, 22) < f(Q1, Q)+ 2¢c;  forall z €S

therefore:

S (21 + 6 -&h,zy+ 5, _é:kz)—<fj+l(Ql’Q2)+2cj+l,0
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However,
Si11(01,902) = fiu(z + 0 -&h,0y)

since &b >z, and f 41 1s non-increasing. Thus:

Sin(z +6 —Eh 40, -8 < Fiv1(01,02) +2¢ 410 —<fj+1(21+Q1—§k‘,Q2)+2Cj+1,o

Therefore Hj?‘ (zl,zz)—H;fZ (z; +81,25 +8,) 2> 0. Similarly we can show that the forth and fifth terms of Eq.

(6.9) are also non-negative.

Considering the non-negativity of all terms of Eq. (6.9) it is clear that Hj(z;, z;) — Hi(z;+0;, z2+02)= 0 and

hence, Hj(z;, z;) 1s a non-increasing function.

4

Cost

Hj(szz)

Intersection

. 1)

2

fz)

Z]

Figure 6.9. The combined threshold graphical representation.
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Note now that part (b) H';(z,z,) of Eq. (6.2) is independent of z,z, and, thus, a constant
H';(z),z;)=H'; in the z,,z, space. Figure 6.9 plots the terms H;(z;,z,) and H'; with H ;(z;,z,) been
non-increasing as shown above. From this Figure it is clear that fj(zl,zz)zmin{Hj (z1,27),H'; (z1,2,)f is a

non-increasing function.

Furthermore, the intersection H;(z;,z,) N H'; can in general be described by a function of the form

h;(zy,z,)=c. This is more clearly shown in Figure 6.10.

Figure 6.10. A better view of the threshold function.

Every (z;,z;) combination that lies within the highlighted area, #;(z;,z,)<c;, corresponds to a depot return
before visiting customer j+/. For (z;,z2) combinations that lie outside the highlighted area #;(z;,z;)>¢;, the

vehicle should proceed to the next customer. This concludes the proof of Theorem 1.

This theorem provides the optimal routing policy; i.e. the policy that if followed by the vehicle, we will

obtain the minimum expected value of the travel cost.
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6.2.3 Solution Algorithm

In order to solve the compartmentalized case of multiple product delivery, we developed an appropriate
algorithm that uses Dynamic Programming to derive the optimal solution in a reasonable amount of time.
Based on the formulation presented in Section 6.2.1, the algorithm starts from the end of the route (last
customer to be visited) and iterates towards the beginning of the route, calculating the remaining minimum
expected cost from each customer site until the end of the route. This procedure computes the minimum
expected cost of the route, given a distance matrix, and demand probability mass functions. Based on the

result of the algorithm, the threshold function 4 i(z1,25)=c for each customer j can be obtained, in line with

what has already been described in Section 6.2.2 to provide the optimal routing policy. A characteristic

example follows below.

Consider the 5-customer network of Figure 6.11. The vehicle capacity is Q =10 units and is equally split
between two products (Q; = 0> = 5); the demand ¢&; for each product i (i = 1,2) and customerj (j =1, ..., 5)

is given in Appendix C, and the distances between the nodes c;; are given in Figure 6.11.

la

12 °

Figure 6.11. 5-customer network for the multiple-product extension.

The problem is solved using the dynamic programming algorithm. Let (z,,z,) be the remaining quantities of

each product type in the vehicle. Let V;(z,z,) and x;(z,z,) be the minimum expected cost and the

corresponding decision after customer ; has been served. Clearly, V.(z,,z,)=18,x,(z,,z,)=1 for

z, €{0,...,5},2, {0,...,5}. In Tables 6.1-6.5 we provide the results for nodes 4, 3, 2, 1, 0. In these Tables,
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(z,,z,) represents the quantity carried by the vehicle after customer j has been served; each cell includes two

values: The first is the value of x,(z,z,) and the second is the value of V;(z;,z,).

Table 6.1. Results obtained for node 4.

z1
0 1 2 3 4 5
z2
0 1;40 1;40 1;40 1;40 1;40 1; 40
1 1; 40 1; 40 1; 40 1; 40 1;40 1;40
2 1;40 1;40 1;40 1;40 1;40 1;40
3 1; 40 1; 40 1; 40 1; 40 1;40 1;40
4 1;40 1;40 1;40 0;37,6 0;34,7 0; 34,4
5 1;40 1;40 1;40 0;37,2 0;34,4 0; 34,0
Table 6.2. Results obtained for node 3.
z1
0 1 2 3 4 5
72
0 1;45,4 0; 45,4 0; 44,7 0; 44,5 0; 44,4 0; 44,4
1 1;45,4 0;43,9 0; 42,8 0; 42,1 0;41,9 0;41,9
2 1;45,4 0; 43,5 0; 42,3 0;41,6 0; 41,5 0;41,4
3 ;45,4 0;43,3 0; 42,1 0;41,4 0;41,2 0;41,1
4 1;45,4 0;43,2 0;41,9 0;41,3 0;41,0 0; 40,9
5 1;45.4 0;43,2 0;41,9 0;41,2 0; 39,9 0; 38,4
Table 6.3. Results obtained for node 2.
z1
0 1 2 3 4 5
z2
0 1; 52,0 1;52,0 1;52,0 1; 52,0 1;52,0 1;52,0
1 1;52,0 1;52,0 1;52,0 1; 52,0 1;52,0 1;52,0
2 1; 52,0 0;51,9 0; 51,8 0; 51,7 0;51,6 0;51,6
3 1; 52,0 0;51,3 0; 50,9 0; 50,7 0; 50,5 0; 50,4
4 0; 51,47 0; 49,3 0; 48,4 0; 47,5 0;47,0 0; 46,8
5 0; 51,46 0; 49,3 0; 47,5 0; 46,2 0; 45,4 0; 44,9
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Table 6.4. Results obtained for node 1.
z1
0 1 2 3 4 5
z2

0 ;70,2 1;70,2 1;70,2 1;70,2 1;70,2 1;70,2 H, > H,
1 1;70,2 1;70,2 1;70,2 1;70,2 1;70,2 1;70,2

2 1;70,2 1;70,2 1;70,2 1:70.2 1:70.2 1:70.2

3 1,70,2 1;70,2 1; 70,2 0; 70,0 0; 69,6 0; 69,5

4 1;70,2 1;70,2 0; 70,0 0; 69,3 0; 68,7 0; 68,6

5 1,70,2 1;70,2 0; 69,5 0; 68,4 0; 67,6 0;67,2

\ H, < H,

Table 6.5. Result obtained for node 0.

z2

z1

84,0

Therefore the minimum expected total cost is equal to 84,0.

Figure 6.12 illustrates the threshold function A,(z;,z,)=cas obtained from the results of Table 6.4 (for

Customer 1). It is clearly seen from Table 6.4 that H'; = 70,2. For all (z;,z,) pairs with H;(z;,z;) < H'; the

vehicle should proceed to the next customer directly.
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22

Customer-1
5@ @ @ 0 0 0
1@ 10} @ 1 1 |
30 (o) (<) m} m} O
2@ (<) (<] (<] m] (m]
1@ @ @ @ @ Q
O No return
@ Return
0@ o} @ @ @ Q@
0 1 2 3 4 5
Z1

Figure 6.12. The corresponding load combinations after serving customer 1.

Figure 6.13 illustrates the threshold function /4(z;,z5) of customer-6 in a different example with Q;=0,=10.

22

11

Customer-6

O No return
@ Return

(] (] m] m] m] m] m] m] m] m]
(] (] (] u] u] u] u] u] u] u]
14 14 o—O1— 40— 40— 00— 00— 00— 00—
1 1 e O — 0 —0—0—0——0— 00—
1 1 1 e O—O0—— 00— O0—0—— 00—
@ ® @ @ e— O —0O——— 00— 00— 00—
(] (] (] (] (] (] m] m] m] m]
(] (] (] (] (] (] (] (] (] (]
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Figure 6.13. The corresponding load combinations after serving customer 6.

1"
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This figure clearly demonstrates the existence of /4(z;,z2) according to which for any combination below the
border defined by the switch between the red and green points, the optimal decision is to return to the depot
in order to refill the vehicle. Conversely, for any combinations above this border the optimal decision would
be to proceed directly to the next customer. This policy can be very simply and clearly communicated to the
vehicle driver and result in significant cost savings for the fleet operator. The performance of the algorithm
was found to be within acceptable levels. As an indication, for a test problem of 10 customer points, 2
products and vehicle capacity 10 units per product, the algorithm derived the minimum expected cost, as
well as the threshold curves per customer, within 9 sec. The number of combinations examined for each of
the customer points 2-9 were approximately 1330. The experiments were run on a PC equipped with Intel

Pentium IV, at 2.4 GHz and 512 MB of RAM.

In order to further assess the performance of the algorithm for the two-product case a large number of
problem test cases were created and run. We generated approximately 30,000 problems of appropriate

characteristics and the results obtained are shown in Figure 6.14.

2 Product case
10000

—_
(=3
(=3
S

3
£
S100
g
=
2
£
=]
Q
10 e
—Q=3O
—Q:ZO
—Q: 1 O
1
5 6 7 8 9 10 11 12 13 14 15
Customers

Figure 6.14. Performance results of the algorithm.

Three different problem test cases are presented in this figure. The first test case (10,000 randomly generated

problems) concerns a vehicle with total capacity Q = 10 equally split between the two compartments, and is
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shown in green color. The second test case (another 10,000 randomly generated problems) concerns a
vehicle with total capacity Q = 20 equally split between the two compartments, and is shown in blue color.
The third test case (another 10,000 randomly generated problems) concerns a vehicle with total capacity Q =
30 equally split between the two compartments, and is shown in red color. Each point in these curves
corresponds to the average solution time for 1,000 randomly generated problems. The demand distributions

were generated randomly.

From Figure 6.14 it can be clearly seen that for a given number of customers, the increase of the vehicle
capacity (Q = 10, 20, 30) results in a significant increase in the computational time of the algorithm (note
that the scale of the y-axis is logarithmic). On the other hand, if the capacity of the vehicle is kept constant,
and the number of customers is increased, the computational time also increases, almost linearly. In order to
analyze this latter relationship further, ten different test cases were run with Q = 20, ranging from five to fifty
customer points (1000 randomly generated problems for each customer) and are shown in Figure 6.15. Each
point in this Figure represents the average time for the 1000 problems of the particular problem set. The
increase in the computational time is indeed linear with the number of customers. Even at the 50-customer
instance the algorithm took approximately 1635 seconds (= 27 minutes) in order to obtain the solution of the

problem.
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Figure 6.15. Performance results with up to 50 customer points.

71




University of the Aegean Department of Financial and Management Engineering

6.3 Multiple Product Delivery: Unified Load

Recall from Chapter 4 that in the unified load case (shown in Figure 4.1) the vehicle may carry any quantity
of product i e{l,..., K}, provided that the total capacity Q of the vehicle is not exceeded.

Upon completion of service at customer site j, the vehicle’s driver has to make the same decision as the one
described in Sections 5.2 and 6.2, i.e. proceed to customer j+/, or return to the depot in order to refill the
vehicle and resume the route to serve customer j+/. The objective of the problem is to serve all customers

(replenish their stock for all items) and minimize travel cost.

As before, we declare &; the stochastic demand of customer je{l,...,n} for product i. The demand per

customer is no longer independent with respect to the product types, since for each customer j & ]/.“ +...+ fjl.‘* <

Q. Thus, the probability mass function Pj(z;, z», ..., zx) 1s, in general, joint.

6.3.1 Dynamic Programming Formulation

We will focus on the 2 product case, which can be extended to £>2 products in a straightforward manner. Let

z; represent the stock onboard for product i after serving customer ;. Let

pjkyky) = Prob(é} =&k 512 = &% )represent the combined probability mass function. Also let
f(z1,2,) denote the minimum expected cost from customer j onward. Note that all product quantities are

calculated using the same unit of measure e.g. m” or kg.

In this case there are additional issues to be considered. First, upon visiting the depot, an additional decision
needs to be made regarding the quantities of stock to be loaded onto the vehicle. Let 8 be the quantity of
product type-1 to be loaded onto the vehicle. Then in the 2-product case, the quantity of product type-2 will
be O-0. Secondly, two sequential returns to the depot may occur in this problem. This may occur only if the
vehicle does not proceed to client j+/ but visits the depot first. In this case if the quantity 0 for product type-
1 (or Q-0 for product type-2) loaded onto the vehicle at the depot is not adequate to fully satisfy the client’s

demand, the vehicle will return to the depot once more, and make an additional, informed this time, decision.
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The stock s loaded to the vehicle for product type-1 (and Q-s for product type-2) will guarantee that the

demand of customer j+1 is fully satisfied. This is shown in Figure 6.16 for the case where §< &

s-(£5-0), O-s

S 0, 0-(6-¢*)

s, O-s

Figure 6.16. The case that 6 < &"
The mathematical formulation of the unified load problem (the proof of which is given in Appendix F) can

be obtained using part (b) of Figure (6.1) and (6.16) and is shown below:

fj(Zl’ZZ):min

cjjat Z ij+1(21—fk"zz—sz)PjJrl(kl,kz)Jr (term a)\
k£ <z, ky& <z,
+ Z > {2(: 0% mi£10<Q fi 0= "~z ),Q—H)}p ik k) + (term b)
R e > (part a)
- > |:201+10 + , min f111(0,0-0-(£" —Zz)):lpj+1(k1,kz)+ (term c)
k, £h <z, kyz, <§k2 —2,20<Q
D DD D IR . O-(" -z).0-0-(&" —zm}p j+1G1, k) (term d))
k Z<§] k, 22<§’¢2 -2 <0<0—(¢ "’ -z,)
(6.10)
€j0tCo, 41t 3\
D FiO0=E8,0-0-8")p 1 (ky k) +
th<g  ER<0-0
. k,
- + kZ}: kzz {20141’0 +§k1 EI;;SQ Si(s—=(S —19),Q—S)}Pj+1 (ky ko) + > (part b)
0<0<0 0<¢& &2 <0-0
£ 20t minfia{s0-s-[gR —(Q—H)]}}p RS
4 . 0<5<20-0—-£"
<o 0-0<g
J
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In Eq. (6.10) the first part in the minimization represents the expected cost of going directly to the next
customer, whereas the second part represents the expected cost of the restocking action. As it can be clearly
observed, the first part of the minimization equation includes four terms, which correspond to the four cases

in part (b) of Figure 6.1.

The first term (after c;;+/) represents the expected cost incurred if the vehicle proceeds to the next customer
(j+1) directly and the stock of both products is sufficient to fully satisfy the demands &%, & of the next

customer (Area A in part (b) of Figure 6.1). The loads of the vehicle before and after serving customer j+/

are schematically represented in Figure 6.17 below.

ko gk
Z1,Z> &n, &n Z - .fk',zz- §k2

»
>

v

Figure 6.17. The case in which the demand is fully satisfied: z, >, z, >&% .

The second term represents the expected cost incurred if the vehicle proceeds to the next customer directly
and the stock on board of product type-1 is not sufficient to fully satisfy the demand of the next customer,
while the stock on board of product type-2 is sufficient (Area B in part (b) of Figure 6.1). The path of the

vehicle and the corresponding vehicle loads are shown in Figure 6.18 below.

71,23 51‘1 , 61‘2 0— (gk, - Zl)’ Q'H

S
N
N
1
EAY
N
\ 4
v

Figure 6.18. The case in which z,< & and z, >&% .
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In this case, the vehicle will visit customer j+1, it will fully satisfy the demand &*: for product type-2 but
will partially satisfy the demand &% for product type-1, and will, therefore, return to the depot for stock
replenishment. There, it will load € units of measure for product type-1 and Q-0 for product type-2. The

stock left on board after serving customer j+7 is 0 — (& % _ 7)) for product type-1 and Q-6 for product type-2.

Note that always 0 > &5 - z,, since the exact value of &% is known upon visiting the customer. Note also the

additional minimization inside the parenthesis the purpose of which is to select the optimal 6 (lower cost

incurred) for this stage of the algorithm.

The third term represents the cost incurred if the vehicle proceeds to the next customer directly and the stock
on board of product type-1 is sufficient to fully satisfy the demand &* of the next customer, while the stock

of product type-2 is not sufficient to satisfy £* (Area C in part (b) of Figure 6.1). This case is analogous to

the previous one; the path of the vehicle and the corresponding vehicle loads are shown in Figure 6.19. Note
also the additional minimization inside the parenthesis whose purpose is to select the optimal & (lower cost

incurred) for that stage of the algorithm.

21,2 £ gk 0, (0-0) - (&"-2)

»
L

0, 0-0

Figure 6.19. The case in which z,>&" and z, < £% .

v

The fourth term represents the cost incurred if the vehicle goes to the next customer directly and neither the
stock of product type-1 nor the stock of product type-2 are sufficient to fully satisfy the demand & ki ¢ k

(Area D in part (b) of Figure 6.1). The path of the vehicle and the corresponding vehicle loads are shown in
Figure 6.20. Note also the additional minimization inside the parenthesis whose purpose is to select the

optimal @ (lower cost incurred) for that stage of the algorithm.
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21,22 o gk 0—(&"-2), (0-0)— (&5 - 25)

»

Figure 6.20. The case in both z,< £ and z, < &%

The second part of the minimization equation Eq. (6.10) consists of three terms (after the sum ¢; o +¢q ;1)

Note the additional external minimization of the entire part (b) of Eq. (6.10) whose purpose is to select the
optimal @ (lower cost incurred) for that stage of the algorithm. Due to the fact that this is a proactive depot

return, the values of z; and z, do not affect the result, which is thus independent of z; and z,. Furthermore,
since §k‘ and .sz were not known the quantities 8 and Q-6 loaded at the depot may not be sufficient to

satisfy the demand of customer j+/. The first term of the second part represents the case in which the vehicle

visits the depot, loads 6 of product type-1 and Q-6 of product type-2, proceeds to customer j+/ and can fully

satisfy demand &%, £% . This is shown in Figure 6.21.

0-&4), (0-0-&*)

g
el
ry
Nw-
v

VAW )

Figure 6.21. The case in which 6 > &; k and Q-62¢, b

The second term represents the case in which upon visiting customer j+/ the vehicle cannot satisfy the
customer’s demand for product type-1. In this case, the vehicle will return to the depot once more, and make
an additional, informed this time, decision for loading stock s for product type-1 (and Q-s for product type-2)
in order to guarantee that it will fully satisfy the demand of customer j+/ (see Figure 6.16). In addition to the
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external minimization with respect to 6, note the internal minimization (inside the parenthesis) with respect

to s, whose purpose is to select the optimal s (lower cost incurred) for that stage of the algorithm.

The third term represents the case that after visiting customer j+/ the vehicle cannot satisfy the customer’s
demand for product type-2. The course of action here is analogous to the one discussed previously. This is
shown in Figure 6.22. In addition to the external minimization with respect to #, note the internal
minimization (inside the parenthesis) with respect to s, whose purpose is to select the optimal s (lower cost

incurred) for that stage of the algorithm.

s, O-s- [£5-(0-0)]

v

VAW S)

Figure 6.22. The case that 0-0< & ke

6.3.2 Problem Characteristics

The value of the minimum expected cost can be estimated using Eq. (6.10). However, in order to develop the
policy which leads to achieving this minimum expected cost for the unified load case we need to investigate
a threshold theorem analogous to Theorem 1 of the compartmentalized load case. Proceeding in the same

fashion as in the latter case we first introduce Lemma 2 and then Theorem 2.

LEMMA 2.

Si(z1,22) < 2¢; +021912ij(ﬁ,Q—49) Sforall z,z; € §; (6.11)

Proof. From Eq. (6.10) we obtain:
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Cj,() +CO,j+l +
D fO-E8,0-0-E"%)p (k) +
kEM<0 ke <0-6
fj(z1,23) < min + z z )40+, min fj+1 (s—(&h 9),Q—S)}Pj+1 (ky kp)+ (6.12)
0=0<Q ko< kpEr<0-0 §h-oss
DS {29,-“,0 +omin  fi(s,0-s—(E0 —(Q—e)»}p PRGNS
kliﬁfkl <6 kz 1Q‘9<§k2 é ’ _(Q_Q)SSSQ
For z; = @ and z, = Q-0 part (a) of Eq. (6.10) becomes:
it Y D FiO0=E5,0-0-E")p (ko) +
ki< kE*2<0-0
[;90,0-0={+ > Z [2%1’0 £ min fi(s—(& k —19),Q—s):|pj+1 (ky, ky) + (6.13)
k 9<§1¢] <Q 0 é: —GSSSQ
+ |:2Cj+1,0 + , min S (5,0-s- (" —(Q—Q)))}an(/’ﬁJ’fz)Jr
k120 ky0-0<Eh ¢ 1 o(0-0)ss=0

Regarding the above function, note that in [terms (b) and (c) of Eq. (6.10)] the quantity of product-1 loaded

to the vehicle upon its return to the depot is denoted by s (not to be confused with z; = 6). Furthermore term

(d) of Eq. (6.10) is zero since P.i+1(§ gk >9+Q—9:Q)=0

From Eq. (6.10) and for z; = 6 and z; = Q-0 the minimum value of f;(6,0-6) with respect to 0 <6 <Q, i.e.

min _f;(6,0—-0) is given by part (a).
0<6<0

min_f;(6,0-6) = mm f()(QQ 0) (6.14)

0<6<0

This is true since in this case min _f; @@,0-0)< mm /i ® 6,0-0).
0<6<0 "’ 0<6<Q

84




University of the Aegean Department of Financial and Management Engineering

The left-hand side of the above inequality is given by considering the minimum value of Eq. (6.13) with
respect to 0 < 6 < O, while the right-hand side is part (b) of Eq. (6.10). This inequality holds since

Cj a1 SCj0+Co -

From Egs. (6.14) and (6.13) we obtain:

Oggngj 0,0-0) =

it Y X F(0=EN,0-0-E)p (ki ky)+

<o eR2<0-0

= min <+ Z Z {2Cj+10+ kll_lthiil“ijn(@—(é k'—e),Q—Q)}Pjn(kl,sz (6.15)

0<6<0 e

+ z Z {2c_,-+1,o + ,, min fi1(0-6,0-(&" _(Q—H))):lpl.+l (ky ky)+
< e2>0-0 £ —(0-0)<0<Q

Note that the sum of the last three terms of the right-hand side of Eq. (6.15) is identical to the sum of the last
three terms of the right-hand side of Eq. (6.12). By substituting the former to the latter we obtain:

f] (Zl ,Zz) < €0 +CO,j+1 +01<%ng f} (95 Q_e) —Cj i+l

SC_]',O +(C0,j +Cj,j+l)_cj,j+l +023£Qf1 (H,Q—H) (6.16)
<c; + min [:(0,0-60)<2cq; + min f;(0,0-6
¢j,0tCo,; +0232Qf-’( ,0-0)<2¢ +0232Qf-’( ,0-0) QED

Let now Hj(z;,z;) and H'j(z;,z;) denote the values of part (a) and part (b) inside the minimisation of Eq.
(6.10). Note that part (b) is independent of the values of z;,z,. We will show that a theorem similar to

Theorem 1 (discussed in Section 6.2.2) holds for the unified load case.

Let z, ,z, the item quantities on board after serving customer ;.
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THEOREM 2: In the unified load case of Eq. (6.10), for each customer j, there exists a threshold function

h" j(zy,z9)=c"j, such that the optimal decision, after serving customer j, is to continue to customer j+1 if

B j(z .25 )2 c*j, or return to the depot otherwise.

The proof is similar to that of Theorem 1. We will show by induction that for all (z;,z;) € S;, fi(z1,z2) is a
non-increasing function; that is f;(z; + 8,2, +8,) < f;(z1,2,) for z|,z, >0. This relationship is true for the last
customer n, where f,(z;,z;) = cno is independent of (z;,z,). Hence f,(z;,z,) is non-increasing with respect to
(z1,22) € Sy. We will now prove that similarly to the compartmentalised case, if f+;(z;,z2) is monotonically
non-increasing with respect to (z;,z;) € S;+;, then fj(z;,z2) is also monotonically non-increasing with respect

to (Z],Zg) € S]

Let:

Hj(z), z5) = H7(21922)+H?(Zlaz2)+H5(ZI’Z2)+H7(21922)= (6.17)

=it z ij+1(21—5k',zz—§kz)l7j+1(k1,k2)

ki:Ef<z ky:£ <z,

> > {2c,+lo+ k]_rlaiga<gf,-+1(e—(é"l—zl),Q—e)}pﬁl(kl,kz)

| iz <& kyiEf2 <z,

Z Z {201+10+ h_mir<19<ij+1(9’Q—9—(§k2 _22)):|Pj+1(k1»k2)+

kM <z, kyiz,<&R

+ Z > {2@“0 min )f,-+1(e—(§"'—zl),Q—e—(‘f"z—a))}pﬁl(kl,kz)

"] (R _
kiz <€ kyizy<E® —2<0<0-(5 " -z,

We will calculate the difference Hj(z;, z2) — Hj(z;+6,, z>+0,) by subtracting the terms that correspond to the

same nine regions of Figures 6.7 and 6.8 for the first and second term of the difference respectively.

Hj(z}, z3) — Hy(z;+0,, zo+02) = (6.18)
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' b ' b b
lH?(Zl,Zz)—H?'(Zl +8),25 +62)J+[Hjl (21,22)~ H (2 +81,2, +52)J+lH_,-Z (z1,22)—H ' (2 + 8,2 +52)J+

+ [H;l (Zl,Zz)—]{}ly4 (Zl +81,Zz +82)]+ []{;1] (Zl,Zz) —H;-ZVB (Zl +81,Zz +82)]+[H72 (Zl,Zz) —H?yz (Zl +81, Zz +82)]+

[H]C2 (Zl,Zz)—H;"] (Zl +81,Zz +82)]+ []{;l4 (Zl,Zz)—]{;"2 (Zl +81,Zz +82)]+[H]a-'3 (Zl,Zz)—Hja-”(Zl +81,Zz +82)]:

Cjja T z ij+1(21—fk‘azz—sz)Pﬁl(kl’kz)

k&N <z ky i8R <z,

—Cjj T z ij+1(21 +6,-¢&M,2, + 5, —sz)Pﬁl(kl’kz)

k&R <z by 8 <z,

+ z z {2@+10 + rIzliSHSijﬂ(e—(f . —21),Q—9)}Pj+1(k1’k2)

iz <N <z 48, k, 82 <2,

- Z ij+1(21+51—§k‘,22 +52—§k2)19j+1(k15k2)

kyizy <&M <z 46, ky 182 <2,

+ Z z {20_141,0 + , min ij+1 O-& " -2 ):Q—H)}Pjﬂ (ky,k3)

1_
Kz, +0,<EM kE <z, ¢ asos

— Z Z |:2C]+10+ "lmiila f]+1(9 (95 _51),Q_9):|pj+1(k19k2)

Z

kz<§ +§k§ <z,

+ Z Z {2cj+1,0 + o min o fy 0.0-0-(&" _22)):|pj+1(k1»k2)
k&M <z kyiz,<ER2 <2, 46, ¢ Hs0<0

- Z ij+1(21+51—§k1522 +52—§k2)17j+1(k1’k2)

k&M <z kyiz,<ER <2, 46,

.
4oy 0y {QCHN min £ (0= =2).0-0-(E" ~2) |p k)

&M —z<0<0-(£ " -z))

% r
kyiz <&M <z 40, ky 1z, <EM <2, 45,

- Z ij+1(21+51—§k1522 +52—§k2)Pj+1(k15k2)

kyiz <N <z 48, kyiz,<EF2 <2, 46,

> term 1

> term 2

> term 3

> term 4

> term 5
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. i . .
LR {26"“"’ o gt O )0 =0 (6 —z2)>}p,~+l(k1,k2)
kyiz +8,<EM kyizy<E2 <2, 45, EN—z,20<0-(&£ " —z,)
> term 6
i k
_ Z Z {201'“,0 + , min Sin(@—=(& ™ —z —51),Q—9)}pj+1(k1,k2)
ky:z,+0, <6z1¢1k2:z2 <é:/t2 <z, +6, &M —z,20<0 )
k 3
+ z z |:2(:j+1,0+ " min fj+l(l9’Q—19—(§ 2—22)):|pj+1(k1,k2)
kM1 <z bz, +5,<ER ER_z,<6<0
> term 7
_ Z z |:2c]~+1,0 + o min o fiy 0,0-0-(% -z, _52)):|Pj+1 (k1. k)
kl:ézk] Sz]k2:22+§2<§k2 & —2,20<0 J
i k k
Hoox X et min S0 @0 —2),0-0-(E" —2) p k)
kyiz, <EM <z 48, ky iz, +8, <& EN—z,20<0—(& " -2,)
> term 8
_ Z Z {20_,41’0 topmin S (0, 0-0-(&" -z, -5, ))}pjﬂ (ky,ky)
k2, <EM <z, 46, kyizy +6,<ER2 & —2,20<0 )
N
' 2ot _min o f@=E -2).0-0-E" -2) pulhi k)
ky:z) §<§k‘ kyiz, §<§"2 { i EM 2, <0<0-(£" -2,) It I : rerm 9
|

- |
- 2 2 {2‘3141,0 + , mmn fia(0=(E"5 =2, -5),0-0-(&" -z, —52))}Pj+1(k1|,k2)
kl:z] +51<ngl k2122+52<é:k2 Cv’z _ZISHSQ_(CE _zz) /|

We can distinguish three types of terms in Eq.(6.18). The first type includes the first term. Considering this

term we have:
H?(ZI,ZZ)—HjIV(Zl-F&l,ZZ +62)= (6181)
Z Z[fjﬂ(zl _é:klazz _é:kz)_fjﬂ(zl +0) _é:klazz +0, _é:kz)]PjH(k],kz)

ghsz & . <z,

Since f;+(z;, z2) is monotonically non-increasing, this term is non-negative.
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The second type of terms includes the third, sixth, seventh, eighth and nineth terms of Eq.(6.18). Considering

the third term we have:

H?Z(szz) - H?V'(Z1+51’22 +07)= (6.18.2)

= 2 2 {2‘%10* klmi39<gf/+1(9—(§k’_Zl)’Q_‘g)}ij(kl’/@)

kyiz +6,<EM ki ER <z, a=o=

- > {2c,+lo+ min f,~+1[e—[§"l—(zl+61)],Q—e]}p_,-+l(k1,kz)=

k1
bz +0,<EM ey <z, ~(2+6))<0<0

= Z Z I: min fj+1[9 (& K -21),0-0]- ch min fj+1[‘9_[§ ky —(z +§1)],Q—9]}pj+1(k1,k2)
bz, 40,<E kyE® <z, <00 ~(2,+6,)<0<Q
Let z1=0-(¢% -z) and z, =0-6.

Then f,,[0- (" —2),0-01=f;,(z1,z2) and fj+1l«9—[§ h_(z +51)],Q—9J=f_,+l(z'1 +8,,22).

Since f;, (z'1,z2) is monotonically non-increasing, then Sin (z1,22)2> Sin (zh +§1,z'z). Furthermore, by
examining the minimization boundaries &% -2z <0<Q and ¢ k —(z; +61)<0<Q it is clear that the first is a

subset of the second.

Thus:

fj-%—l(zvng'Z)ij_H(Z'l +§1,Z'2)<:>

inﬂ[e_(ékl _Zl)’Q_'g]ijH[e_(ékl -z1-01),0-0l<

<:>§kfnlﬂ6 Sinl0- (&4 -2).0-0)2 klmlﬂg Sinl0- (Eh -z -8)),0-0]

_zl

e min  f,[0-(E"-2),0-6]>  min ijﬂ[e—(f"l—zl—él),g—e]

EM_z<0<0 EM_z-5,<0<

Thus, H ?2 (zy,29) - H f'l (z) +8,25 +8,) = 0. Similarly we can show that the differences corresponding to the

sixth, seventh, eighth and nineth terms are also non-negative.
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The third type of terms includes the second, fourth, and fifth terms of Eq.(6.18). Considering the second term

we have:
H?] (Zl,Zz)—H;lvz(Zl'f'Sl,Zz +52)= (6183)
= Z Z 2¢j0+ frzliilkgfm(@—(f ki —21),0-0)— f;41(z1 + 6 —&h 2y 48, - M) Pk ko)

kyizy <&M <246, ky i <2,

If the following holds, then the above term is non-negative:

2cj410 + kmin f]+1(9 (EM=2),0-0~ 11121 +6 &8 .2y +5, -ER) 200

é: 1
: (6.18.4)
<:>fj+1(21+51—5 ,Z2p+6, ¢ 2)Szcjﬂ,o +§k1 mlilg Sin(@-(S i z),0-6)
Z, SUS
According to LEMMA 2 f,,1(z) +8, - &%, 2y +8, &%) <2¢ .1 +OmeinQ fi+1(0.0-6). (6.18.5)
However,

min_f,1(6,0-0)< min f,,(0-(& " -z2),0-0)< L min fr(0-( b -z),0-0)
0<6<0 0<6<0 EMN—z,<0<0

The first inequality holds since f;+; is non-decreasing (and & > z;) and the second since the limits of & are

narrower in the last term. Thus, the inequality of Eq.(6.18.4) holds, and the difference of Eq.(6.18.3) is non-
negative. Similarly we can show that the difference corresponding to fourth and fifth terms are also non-

negative.

Assembling all the terms mentioned above we can clearly see that Hj(z;, z;) — Hj(z;+J;, z2+0,)= 0 and hence,
Hjz;, z;) is a monotonically non-increasing function similarly to the respective equation in the

compartmentalized load case. Note now that part (b) H'; (z;,z,) of Eq. (6.10) is independent of z,,z, and
thus a constant H';(zy,z,)=H'; in the z;,z, space. Therefore f; (zl,zz):min{Hj(zl,ZZ),H'j (z1,2,)f is a

non-increasing function.
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Furthermore, the intersection H;(z;,z,) N H'; can in general be described by a function of the form
h;(z;,z,)=c. This is more clearly shown in Figure 6.24. Every (z;,z;) combination that lies within the
highlighted area (red points), 4;(z;,z,) <c;, corresponds to a depot return before visiting customer j+/. For
(z1,22) combinations that lie outside the highlighted area (green points) #;(z;,z,)>c¢;, the vehicle should

proceed to the next customer.

This concludes the proof of Theorem 2, which, similarly to Theorem 1, provides the optimal routing policy;

i.e. the policy that if followed by the vehicle, we will obtain the minimum expected value of the travel cost.

6.3.3 Solution Algorithm

Similarly to the compartmentalized multiple product case, and based on the formulation presented in Section
6.3.1, we developed an appropriate algorithm that uses Dynamic Programming to derive the optimal solution

of the unified load problem in a reasonable amount of time. Consider the 5-customer network of Figure 6.23.
The total vehicle capacity (for both products) is O =10 units; the demand & for each product i (i = 1,2) per

customerj (f = 1, ..., 5) is given in Appendix D, and the distances between the nodes c¢; are given in Figure

6.23.

la

18 o

Figure 6.23. 5-customer network for the unified load case.
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The problem is solved using the dynamic programming algorithm presented in Section 6.3.1. Let (z,,z,) be
the remaining quantities in the vehicle after customer j has been served. Let f(z,2,) and x;(z,z,) be the
minimum expected cost and the corresponding decision after customer je{l,2,3,4,5} has been served.

Clearly, f5(z,,z,)=18,x5(z,2,)=1 for z; 7, €{0,...,10}, z;+z, < 10.

In Tables 6.6-6.10 we provide the results for nodes 0, 1, 2, 3, 4. In these Tables, (z,,z,) represents the

quantity carried by the vehicle after customer j has been served; each cell includes two values: The first is the

value of x;(z;,z,) and the second is the value of f;(z,2,).

Table 6.6. Results obtained for node 4.

z1

0 1 2 3 4 5 6 7 8 9 10
z2
0 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1
1 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 -
2 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 - -
3 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 | 1;41,1 - - -
4 1;41,1 | 1;41,1 | 0;358 | 0;35,6 | 0;35,5 | 0,353 | 0;35,1 - - - -
5 1;41,1 | 1;41,1 | 0;357 | 0;355 | 0;353 | 0;35,1 - - - - -
6 1;41,1 | 1;41,1 | 0;356 | 0;354 | 0;35,1 - - - - - -
7 1;41,1 | 1;41,1 | 0;35,5 | 0;352 - - - - - - -
8 1;41,1 | 1;41,1 | 0;354 - - - - - - - -
9 1;41,1 | 1;41,1 - - - - - - - - -
10 1;41,1 - - - - - - - - - -
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Table 6.7. Results obtained for node 3.

! 0 1 2 3 4 5 6 7 8 9 10
z2

0 1;44,6 | 0;44,5 | 0;444 | 0,444 | 0;44,4 | 0,443 | 0;44,3 | 0;443 | 0;443 | 0;44,3 | 0;443
1 1;44,6 | 0;43,1 | 0;43,0 | 0;42,8 | 0;42,7 | 0;42,7 | 0;42,7 | 0;42,7 | 0;42,7 | 0;42,7 -
2| 0,445 | 0;43,1 | 0;42,5 | 0,423 | 0;42,2 | 0;42,2 | 0;422 | 0;422 | 0;422 - -
3 ] 0;44,5 | 0;43,0 | 0;42,5 | 0;42,2 | 0;422 | 0;42,2 | 0;42,2 | 0;422 - - -
4 ] 0;44,5 | 0;43,0 | 0;42,5 | 0;42,2 | 0;42,1 | 0;42,1 | 0;42,1 - : - .
S | 0,445 | 0;43,0 | 0;42,5 | 0;39,0 | 0;388 | 0;38,1 - - - . R
6 | 0,445 | 0;43,0 | 0;42.4 | 0;38,9 | 0;37.6 - - - - - -
7 | 0;44,5 | 0;43,0 | 0,424 | 0;38,7 - - - - - - -
8 0;44,5 | 0;43,0 | 0;42,4 - - - - - - _ .
9 0;44,5 | 0;43,0 - - - - - - - - -
10| 0,445 - - - - - - - - - -

Table 6.8. Results obtained for node 2.
z1
0 1 2 3 4 5 6 7 8 9 10

z2

0 1;52,4 | 15524 | 1;524 | 1;52,4 | 1;524 | 1;524 | 1;524 | 1;524 | 1;524 | 1;524 | 1;524
1 1;52,4 | 1;524 | 0;52,3 | 0;52,2 | 0;52,2 | 0;52,2 | 0;52,2 | 0;52,1 | 0;52,1 | 0;52,1 -
2 1;52,4 | 0;50,1 | 0;50,0 | 0;49,9 | 0;49,9 | 0;49,8 | 0;49.8 | 0;49,8 | 0;49,8 - -
3 0;50,1 | 0;49,9 | 0;49,3 | 0;49,3 | 0,492 | 0;49,1 | 0;49,1 | 0;49,1 - - -
4 0;50,0 | 0;483 | 0;47,7 | 0;47,3 | 0;47,2 | 0;47,1 | 0;47,0 - - - -
5 0;50,0 | 0;483 | 0;46,7 | 0;46,2 | 0;459 | 0,458 - - - - -
6 0;50,0 | 0;482 | 0;46,6 | 0;45,9 | 0;45,5 - - - - - _
7 0;50,0 | 0;482 | 0;46,6 | 0;45,8 - - . - - . i
8 0;50,0 | 0;482 | 0;46,6 - - - - - - . .
9 0; 50,0 | 0;48,2 - - - - - - - N .
10 0; 50,0 - - - - - - - - - -
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Table 6.9. Results obtained for node 1.

z1
0 1 2 3 4 5 6 7 8 9 10
z2
0 1;67,6 | 1;67,6 | 1;67,6 | 1;67,6 | 1;67,6 | 1;67,6 | 1;67,6 | 1;67.6 | 1;67.6 | 1;67,6 | 1;67,6
1 1;67,6 | 1;67,6 | 1;67,6 | 1;67,6 | 1;67,6 | 1;67,6 | 1;67,6 | 1;67,6 | 1;67,6 | 1;67,6 -
2 1;67,6 | 1;67,6 | 1;67,6 | 1;67,6 | 1;67,6 | 1;67,6 | 1;67,6 | 1;67,6 | 1;67,6 -‘\\H o
3 1;67,6 | 1;67,6 | 1;67,6 | 1;67,6 | 1;67,6 | 1;67,6 | 1;67,6 | 1;67.,6 - - : :
4 1;67,6 | 1;67,6 | 1:67.611 0,674 | 0;67,2 | 0;67,1 | 0;67,0 - - - -
5 1;67,6 | 1;67,6 |[0;67,3 | 0;66,5 | 0;66,3 | 0;66,1| - —1— H, < H, - -
6 15676 | 1;67,6 || 0;663 | 0;654 | 0,646 |[ - - - -
7 1;67,6 | 1;67,6 || 0;66,3 | 0;64,7 - - - - - - -
8 1;67,6 | 1;67.6 || 0; 66,2 - - - - - - - -
o || ye76 | ers |- | - ] - - ] - - ]
10 1;67,6 - - - - - - - - - -
Table 6.10. Results obtained for node 0 (depot).
z1
0 1 2 3 4 5 6 7 8 9 10
z2
0 109,5 | 109 108,7 | 108,7 | 108,6 | 108,6 | 1086 | 1086 | 108,5 | 1085 108,5
i 1092 | 1078 | 1073 | 1072 | 1072 | 107,1 107 107 | 106,9 | 1069 -
2 108,3 | 106,6 | 101,1 | 1011 101 100,9 | 100,8 | 100,7 | 100,6 - -
3 107,6 | 885 83,1 82,9 82,8 82,7 82,6 82,5 - - -
4 107,5 | 885 83 82,8 82,7 82,5 82,3 - - - -
S 107,5 | 884 82,9 82,7 82,5 82,4 - - - - -
6 107,5 | 884 82,8 82,6 82,5 - - - - - -
7 1074 | 883 | 87 | 8.5 - - - - - - -
8 | 1074 | 883 | 826 - - - - - - - -
o | 1074 | 882 - - - - - - - - -
10 107,4 - - - - - - - - - -
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Therefore the minimum expected total cost is equal to 82,4 forz; =5 and z,=5.

Figure 6.24 illustrates the threshold function #4,(z;,z,)=c as obtained from the results of Table 6.9. It is

clearly seen from this table that H'; = 67,6. For all (z;,z;) pairs with H(z;,z;) < H'; the vehicle should

proceed to the next customer directly.

Customer 1
11
10 B Proceed to Customer 2
M Proceed to Depot
9 )
8 1) 0O
7 =] m} m}
6 =] m} m} m}
22
5 =] m} m} m} m}
4 =] =] m} m} m} m}
3 ) ) ) ) ) ) )
2 =] =] =] =] =] =] =] =]
1 1) 1) 1) 1) 1) 1) 1) 1) 1)
0 i i i i i i i i i 1}
0 1 2 4 5 7 9 10 11
Z]

Figure 6.24. The corresponding load combinations after serving customer 1.

The performance of the algorithm was also found to be within acceptable levels. As an indication, for a test-
problem of 10 customer points, 2 products and total vehicle capacity of 10 units, the algorithm derived the
minimum expected cost, as well as the threshold curves per customer within 1420 seconds (=23,6 min). The
number of combinations examined for each of the customer points 2-9 were approximately 8600. One needs
to take into consideration that this problem is significantly more complex than its compartmentalized
counterpart (approximately 1330 combinations per customer) due to the additional minimization steps
required to identify the optimal @ and s values for each customer point. The experiments were run on a PC

equipped with Intel Pentium IV, at 2.4 GHz and 512 MB of RAM.
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In order to further assess the performance of the algorithm, a large number of problem test cases were
created and run (see Figure 6.25). Three different problem test cases are plotted this figure. The first test case
(10,000 randomly generated problems) concerns a vehicle with a total capacity (sum for both products) Q =
5 and is shown in green color. Each one of the 10 points of the curve is the average of 1,000 randomly
generated problems. The second test case (again 10,000 randomly generated problems) concerns a vehicle
with a total capacity Q = 10 and is shown in blue color. The third test case (10,000 randomly generated
problems) included a vehicle with a total capacity Q = 15, and is shown in red color. The demand

distributions were generated randomly (uniform distributions).
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Figure 6.25. Performance results of the algorithm for the unified load case.

The trends obtained are similar to the ones corresponding to the compartmentalized case. For example, from
Figure 6.25 it can be clearly seen that for a given number of customers, the increase of the vehicle capacity
resulted in an almost exponential increase in the computation time of the algorithm (note that the scale of the

y-axis of the graph is on a logarithmic scale).

On the other hand, if the capacity of the vehicle is kept constant, and the number of customers is increased,

the computation time also increases. In order to analyze this trend further, ten different test cases were run
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with Q=10, ranging from five to fifty customer points (1000 randomly generated problems for each customer
set) as shown in Figure 6.26. Each point in this figure represents the average time for the 1000 problems of
the particular problem set. Figure 6.26 indicates that the increase in the computation time is linear with the

number of customers.

7000

6000 ~

5000 -
4000 /
3000

2000 A

Computation time (sec)

1000 -

—Q:10

Customers

Figure 6.26. Performance results with up to 50 customer points.

For the 50-customer instance, the algorithm took approximately 6220 seconds (= 104 minutes) in order to

obtain the solution of one problem.

6.4 Conclusions

This chapter focused on the multiple products extension of the Stochastic version of the Vehicle Routing
with Depot Returns Problem (SVRDRP). This extension comprised of two cases; the compartmentalized and
the unified load case. The objective of both these cases was to serve all customers with a single vehicle and

minimize the expected value of the travel cost.
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For both cases we presented the characteristics of each problem, a method to determine the minimum
expected cost, and the theoretical results that permit us to determine the optimal decision after serving each
customer. Both cases were formulated through dynamic programming, and for both it was proven that there
exists an appropriate threshold function for each customer that distinguishes two regions in the space of
possible loads after serving the customer: the region of loads for which the optimal decision (after serving
the customer) is to return to the depot, and the region for which the optimal decision is to continue to the
next customer. Both cases were formulated and solved for two products, but the results can be extended to »

products (see Appendix B for the 3-product formulation of the compartmentalized case).

For both cases, through the execution of a large number of randomly generated problems it was found that
the increase of the vehicle capacity results in an almost exponential increase in the computational time of the
algorithm. On the other hand, if the capacity of the vehicle is kept constant, and the number of customers is
increased, the computational time increases linearly with the number of customers. The unified load case
proved to be significantly more complex than the compartmentalized load one, as expected. This is mainly
due to the increased complexity of the formulation, which includes additional minimization steps in order to

identify the replenishment stock for each customer point.
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Chapter1

Pickup and Delivery under Random Demand

7.1 Introduction

In this Chapter we examine the Pickup and Delivery case of the VRDRP under random demand. The
characteristics and the mathematical formulation of the problem are described first. Subsequently, a new
algorithm that solves this problem to optimality is presented. Finally, the performance of the algorithm is

analyzed by solving a large number of sample problems.
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7.2 The Pickup and Delivery SVRDRP

This case addresses an existing business model, according to which a vehicle can both sell (deliver) products
but also collect (pickup) items from its customer base. An example is the distribution of paper-rolls for
newspapers, in which, the paper-rolls are delivered to the customer on pallets and empty pallets are collected

from the customer to be returned to the depot.

The demand of each customer (for either delivery or pickup) is again not known in advance, and it is
revealed when the vehicle arrives at the customer site. However, as before, the sequence of serving the
customers is predefined and the distances among all points in the network (depot and customer sites) are
known. Upon completion of service at customer site j, the vehicle’s driver has to make the same decision as
the one described in Sections 5.2, 6.2 and 6.3, i.e. proceed to customer j+/, or return to the depot in order to
empty the items that were picked up, refill the vehicle, and resume the route to serve customer j+/. An
additional decision should be made concerning the quantity to be loaded to the vehicle each time the vehicle
returns to the depot. This is because unnecessarily high stock levels may prevent the collection of returned

items, therefore causing additional depot returns and lower customer service.

It is noted that the vehicle may have to visit a customer twice (but not more), if it cannot fully meet the
demand of this customer during the first visit (for either delivery or pickup). It is assumed that service at a
customer site and loading/unloading at the depot are performed instantly upon arrival of the vehicle. As in
the multiple product case, the objective of the problem is to serve all customers and minimize travel cost in

an expected value sense.

7.3 Dynamic Programming Formulation

Let z represent the product quantity and b the quantity of the returned items on board after serving customer

J- Let &, be the stochastic product demand (to be delivered to) customer je{l,...,n} and pyx =P(&; = fk )
its probability mass function. Also, let p; be the stochastic demand for the items to be picked up from

customer je{l,...,n} and m, = P(p,= p™) its probability mass function. Note that & and p,are
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independent, and neither may exceed the vehicle capacity Q. Finally let f;(z,b)denote the minimum
expected cost from customer j onward. Note that the quantities a) of the delivered product and b) of the

picked up (returned) items are measured using the same unit of measure, e.g. m’ or kg.

The mathematical formulation for minimizing the expected value of the route cost is given below:

/(z.b)=min (7.1)
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Note that the second part of Eq. (7.1) does not contain a fifth term, since p” cannot exceed the vehicle

capacity Q.

In this case there are additional issues to be considered. First, upon visiting the depot, an additional decision
needs to be made regarding the quantity of stock to be loaded onto the vehicle. This is due to the fact that it

may not prove cost effective to load the vehicle to its full capacity, as there needs to be some space available
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in order to be able to accommodate the returned items as well without causing unnecessary depot returns.
Let 8 be the product quantity to be loaded to the vehicle during its (first) depot return. Then the space left for
the product to be picked up will be O-6. If the depot return comes after serving client j+/ (i.e. the first part
of Eq. (7.1)) then the quantity of product loaded onto the vehicle can be such that the demand of client j+/
can be fully satisfied (either for delivery product or for returned items). However if the depot return comes
before visiting client j+/ (i.e. second part of Eq. (7.1)) then another (subsequent) return to the depot will be
necessary in case the product quantity 6 loaded onto the vehicle (or space Q-8 left for the items to be picked
up) is not adequate to fully satisfy the client’s demand. During the second return, the decision to load stock s

of the product to be delivered is an informed one, since the demand of customer j+/ is fully known.

The first part of the minimization equation consists of four distinct terms. Each term corresponds to one of
the four areas shown in Figure 7.1. In this Figure the x-axis represents the stock on board, and the y-axis

represents the space available in the vehicle after delivery has occurred.

vehicle space

Area C Area A

Area D Area B

v

5( stock

Figure 7.1. The solution space per customer point.

The first term of Eq. (7.1) corresponds to Area A and represents the cost incurred if the vehicle proceeds to

the next customer directly and a) the stock z of the product is sufficient to satisfy the demand (fk <z), and

102




University of the Aegean Department of Financial and Management Engineering

b) the space left for the items to be picked up is also adequate (p™ + b <Q - (z- £¥)) (Area A in Figure 7.1).

This case is shown in Figure 7.2.

zb g p" - )b +p")

v

v

Figure 7.2. Both the stock and the vehicle space are sufficient to satisfy the demand & g and pm .

The second term of Eq. (7.1) corresponds to Area C of Figure 7.1 and represents the cost incurred if the

vehicle goes to the next customer directly and the stock on board is not sufficient to fully satisfy the demand

of the next customer (fk > z), while the space left for the items to be picked up is sufficient to satisfy the

demand for the returned items ( p™ + b < Q). This case is represented in Figure 7.3 below.

zb L p" 0-(&"-2),0
0, (b+ /Om)/'
0.0

Figure 7.3. The stock is not sufficient but the vehicle space is.

The third term of Eq. (7.1) corresponds to Area B of Figure 7.1 and represents the cost incurred if the vehicle

goes to the next customer directly and the space left for the items to be picked up is not sufficient to fully

satisfy the demand of the next customer (p"+ b > Q - (z - &")), while the product quantity on board is

sufficient to satisfy the corresponding demand of the next customer (§k < z). This case is schematically

represented in Figure 7.4.
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zb g p" 0,(p" -[O-(z- E)-b])
(z- )0z fi/
0.0

Figure 7.4. The stock is sufficient but the vehicle space is not.

The fourth term of Eq. (7.1) corresponds to Area D of Fig.(7.1) and represents the cost incurred if the vehicle

goes to the next customer directly and both the product quantity on board as well as the space left for the
items to be picked up are not sufficient to fully satisfy the demand of the next customer (§k >z, p"+b>

Q). This case is shown in Figure 7.5.

zb & p" 0-(&" -2, [p" -(0-b)]

Figure 7.5. Neither the stock nor the vehicle space are sufficient.

The second part of the minimization equation consists of three terms and represents all possible cases that

may occur when a proactive depot return is performed. In this case the values of z and b do not affect the

result. Furthermore, since £¥and p™ are not known, the quantity @ (and the space available O-6) loaded at

the depot may not be sufficient to satisfy the demand of customer j+/. Thus, a second, subsequent visit to the

depot may be necessary. The first term of the second part represents the case in which the vehicle visits the
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depot, loads a quantity @ of the product (thus the vehicle space left is O-6), proceeds to customer j+/ and can

fully satisfy its demand for both delivery (£* <6) and pickup ( p" < Q-0). This is shown in Figure 7.6.

& p

z,b
\ 0,%'

0-&°), p"

v

Figure 7.6. The case in which 6> &¥and Q- 0> p™

The second term represents the case in which after visiting customer j+/ the vehicle cannot satisfy the

customer’s demand for delivery (&> 6). In this case, the vehicle will deliver its entire load & and pickup the

entire quantity p” (since p” < Q and the vehicle is empty after delivery). Subsequently, it will return to

the depot once more, and make an additional, informed this time, decision for load quantity s for the product
to be delivered in order to guarantee that it will fully satisfy the demand of customer j+/. This case is shown

in Figure 7.7.

P s-(cF-9),0

v

s, 0

Figure 7.7. The case that < & k
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The third term represents the case in which after visiting customer j+/ the vehicle cannot satisfy the

customer’s demand for the product to be picked up (p" > O-(0-&) ). The course of action here is analogous

to the one discussed previously. This case is shown in Figure 7.8.

s, p" [0 (0- "))

v

—————— 0-¢,0-0-&")

s, 0

Figure 7.8. The case that p”" > 0-6.

Note that a fourth term is not present in this part of the equation, since when 6 < & the vehicle delivers its

entire load 6 and thus, can pickup the entire quantity p” <Q.

7.4 Solution Algorithm

Similarly to the multiple product case presented in Chapter 6, and based on the formulation presented in
Section 7.3, we developed an appropriate algorithm that uses Dynamic Programming to derive the optimal

solution of the pickup and delivery problem in a reasonable amount of time.
The solution algorithm proceeds as follows: For each combination z and b and for each step of the algorithm,

both terms of Eq. (7.1) are calculated and the one with the smallest value is selected. For calculating each

term of Eq. (7.1) all allowable values of 8 and s are tested and the appropriate minima are selected.
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As an illustrative example, consider the 5-customer network of Figure 7.9. The vehicle capacity is Q=5 ; the

demand for delivery & and pickup p™ for each customer j (j = 1,..., 5) are given in Appendix E, and the

distances between the nodes c;; are given in Figure 7.9.

la

A
9 G

Figure 7.9. 5-customer network for pickup and delivery extension.

The problem is solved using the dynamic programming algorithm presented in Section 7.3. Let f;(z,b) and
x;(z,b) be the minimum total cost and the corresponding decision after customer je{l,2,3,4,5} has been

served. The remaining quantity in the vehicle is (z,5). Clearly, f5(z5,b5)=18,x5(z5,b5)=1 for 0<z,b<5.

In Tables 7.1-7.4 we provide the results for nodes 1, 2, 3, 4. In these Tables, the valuesz ands represent the

quantities carried by the vehicle for the delivery product and the returned item after customer j has been

served; each cell includes two values: The first is the value of x;(z,b) and the second is the value of f; (z,5).
Furthermore, if we call H;(z,b) the first part of Eq. (7.1) and H'; (z,b) the second part of this Equation, the

results of Tables 7.1 — 7.4 indicate which term is the minimum for each combination (z,5).
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Table 7.1. Results obtained for node 4.
Zy
0 1 2 3 4 5
by
0 1; 44,18 1; 44,18 1;44,18 1;44,18 0; 35,59 0; 38,18
1 1;44,18 1;44,18 1;44,18 1;44,18 | 0;38,54 -
2 1; 44,18 1; 44,18 1;44,18 1; 44,18 - -
3 1;44,18 1; 44,18 1; 44,18 | - - -
4 1;44,18 1;44,18 - - - -
5 ;44,18 |l - - - - -
Hs>H'4
Table 7.2. Results obtained for node 3.
'3 =51,23 — no depot return
z3
0 1 2 3 4 5
b;
0 0; 46,23 0; 45,84 0; 45,49 0; 45,47 0; 46,15 0; 45,27
1 0; 46,25 0; 45,86 0; 45,70 0; 46,25 0; 47,59 -
2 0; 46,49 0; 46,10 0; 46,49 0; 47,67 - -
3 0;47,33 0; 46,96 0; 47,94 - - -
4 0;48,72 | 0;48,43 | = - - -
5 0; 50,83 - - - - -
H; <H';
Table 7.3. Results obtained for node 2.
Z
0 1 2 3 4 5
b,
0 1; 56,38 0; 56,21 0; 55,83 0; 54,43 0; 49,51 0; 49,39
1 1; 56,38 0; 56,23 0; 55,88 0; 54,61 0; 50,15 -
2 1; 56,38 0; 56,28 0; 56,00 0; 55,00 - -
3 1; 56,38 0; 56,35 0; 56,22 - - -
4 1;56,38 | 1;56,38 - - - -
5 1; 56,38 |,\— - - - -
I |
H, >H',
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Table 7.4. Results obtained for node 1.
41
0 1 2 3 4 5
by
0 1;75,98 1;75,98 0; 75,80 0; 73,90 0; 73,56 0; 73,48
1 1;75,98 1;75,98 0; 74,96 0; 74,48 0; 74,82 -
2 1;75,98 1;75,98 0; 75,51 0; 75,60 - -
3 1;75,98 1;75,98 1;75,98 - - -
4 1;75,98 1;75,98 - - - -
5 1;75,98 \ - - - -
H, >H
Table 7.5. Results obtained for node 0 (depot).
Zy
0 1 2 3 4 5
by
0 116,43 113,87 111,32 92,73 91,10 90,51

Therefore the minimum expected total cost is equal to 91,10. For these tables, it is clear that we cannot draw

a conclusion regarding the monotonicity of the function f;(z,5) similar to the conclusion drawn for the cases

of Chapter 6. For example, the first row of Table 7.1 indicates that there is no definite (decreasing) trend as

the value of z increases for » =0. Also, in Table 7.4, for z=2, there is no definite (decreasing) trend

regarding the value of ».

Figure 7.10 illustrates the area (z3,b3)eS; of customer-3 in a richer example for the same method where
0=10. As before, the algorithm calculates the value of the first part of Eq. (7.1) for all the (z,5) combinations.

For each combination, the value obtained is compared with the constant value of the second part. If the
value of the first part is found to be less than the value of the second part, it would mean that for this

particular (z,b)combination the vehicle should proceed to the next customer directly (values shown in Figure

7.10 as green square points). If the value of the first part is found to be greater than the value of the second

part, it would mean that for this particular (z,5)combination the vehicle should proceed to the next customer

via the depot (values shown in Figure 7.10 as red square points).
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Client 3

B No return
H Return

—~ H,>H"

1"

Z3

Figure 7.10. The combined threshold graph for pickup and delivery for Client 3.

From this figure it is clear that the function f;(z,b) is not non-increasing, at least with respect to z3. The
shape of the (z;,b;) area for which the vehicle should continue to the next client is reasonable. Let’s

consider the case for which b; = 2; then for z; = 0 or I the vehicle does not carry enough product to supply
the next customer, although it has adequate space to carry returned items. Due to the limited stock on board

the vehicle should return to the depot to reload. As the stock rises zj € {2,...,5} there is no need to refill; in

addition there is space left to carry returned items. Thus there is no need for a depot return. For values of

z3 > 6 there is not enough space for returned items, and thus the vehicle should return to the depot to unload.
Let’s now consider the case for which z; = 4. For low values of »; €{0,...,3} both the product stock and the

space left on the vehicle are adequate to serve the next customer(s) and no depot return is necessary.

However, for values of »; >4 there is not adequate space left, and thus the vehicle should return to the depot

to unload.

The performance of the algorithm was also found to be within acceptable levels. For a test-problem of 10

customer points, 1 delivery product, 1 pickup item, and total vehicle capacity of 10 units, the algorithm
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derived the minimum expected cost, as well as the individual combined threshold values per customer point,
within 338 seconds (=5,6 min). The experiments were run on a PC equipped with Intel Pentium IV, at 2.4

GHz, and 512 MB of RAM.

In order to further assess the performance of the algorithm, a large number of other problem test cases were
generated and run. Three different problem test cases are plotted in Figure 7.11. Each case represents 10,000
randomly generated problems in total (1000 problems per client). Each point represents the number on
clients in the particular example, ranging from 5 to 15 clients. The first test case concerns a vehicle with a
total capacity (for both the pickup and delivery products) Q = 5 and is shown in green color. The second test
case concerns a vehicle with a total capacity Q = 10 and is shown in blue color. The third test case concerns a
vehicle with a total capacity Q = 15 and is shown in red color. The demand distributions for each problem
were generated randomly (with z mean values close to 50% of the vehicle capacity and b mean values close

to 30% of the vehicle capacity).
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Figure 7.11. Performance results of the algorithm for the pickup and delivery case.
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From Figure 7.11 it can be clearly seen that for a given number of customers, the increase of the vehicle
capacity resulted in an almost exponential increase in the computation time of the algorithm (note that the
scale of the y-axis of the graph is on a logarithmic scale). On the other hand, if the capacity of the vehicle is
kept constant, and the number of customers is increased, the computation time also increases significantly. In
order to analyze this trend further, ten different test cases were run with Q = 10, for five to fifty customer
points and the results are shown in Figure 7.12. Each point in this figure represents the average time for the
1000 problems. The figure indicates that the increase in the computation time is linear with the number of

customers.
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Figure 7.12. Performance results with up to 50 customer points.

For the 50-customer instance the algorithm took approximately 1766 seconds (= 29 min) in order to obtain

the solution of the problem.
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7.5 Conclusions

In this chapter we presented the Pickup and Delivery case of the Stochastic Vehicle Routing with Depot
Returns for Stock Replenishment Problem (SVRDRP). In this case the vehicle not only delivers products to
the customers but it also picks up returned items from each customer (e.g. damaged goods, or empty
packaging). The objective is to serve all customers by minimizing travel cost under random customer

demand.

The characteristics of the problem were presented, together with a new method to determine the minimum
expected cost, as well as the optimal decision after serving each customer. In this case there are additional
issues to be considered. First, upon visiting the depot, an additional decision needs to be made regarding the
quantity of stock to be loaded onto the vehicle. This is due to the fact that it may not prove cost effective to
load the vehicle to its full capacity, as there needs to be some space available in order to be able to
accommodate the returned items as well without causing unnecessary depot returns. If the depot return
comes after serving client j+/ then the quantity of product loaded onto the vehicle can be such that the
demand of client j+/ is fully satisfied (either for delivery product or for returned items). However, if the
depot return comes before visiting client j+/ then another (subsequent) return to the depot will be necessary
in case the product quantity loaded onto the vehicle (or space left for the items to be picked up) is not
adequate to fully satisfy the client’s demand. During the second return, the decision to load a specific

quantity of the product to be delivered is an informed one, since the demand of the client j+/ is fully known.

In addition, computational results have shown that a theorem analogous to Theorems 1 and 2 of Chapter 6
does not hold for the pickup and delivery case of the SVRDRP. This is due to the different characteristics of
this case, as there is a direct relation between the stock levels of the delivery product and the space available

for the pickup items (as the first declines the second rises).

By solving a large number of randomly generated problems, it was found that the increase of the vehicle
capacity results in an almost exponential increase in the computational time of the algorithm. On the other
hand, if the capacity of the vehicle is kept constant, and the number of customers is increased, the

computation time increases linearly by the number of customers.
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Conclusions and Future Research Directions

8.1 Conclusions
In this work we presented, modeled, solved, and analyzed several important cases of the single Vehicle

Routing with Depot Returns Problem (VRDRP). We also highlighted the practical importance of this

problem in the Ex-van sales and other cases, including material handling system routing.
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The objective of the Vehicle Routing with Depot Returns Problem (VRDRP) is to minimize cost (distance)
while serving all customers in a predefined sequence with a single vehicle. The analysis of the problem
showed that its complexity increases exponentially with the number of customers. In addition, a dynamic
programming algorithm (DPA) inspired by the work of Yang ef al. (2000) and Manftrin et al. (2004) was
developed to solve the problem to optimality in efficient computational times. The VRDRP formed the
foundation of this dissertation and was gradually enhanced in the following chapters as shown in Figure 8.1

below.

Deterministic VRDRP * Not addressed in
literature before

Deterministic (Multiple-prod Compartmentalized)

VRDRP
(Single product) Deterministic VRDRP * Not addressed in
N (M-prod Unified Load) literature before
A Stochastic VRDRP * Not addressed in
Stochastic (Multiple-prod Compartmentalized) |  terature before
VRDRP
(Single product) Stochastic VRDRP * Not addressed in
) - literature bef
Initially presented by (Multiple-prod Unified Load) fterature betore
Yang et al. (2000)
Stochastic VRDRP * Not addressed in
(Pickup and Delivery) literature before

Figure 8.1. The enhancements of the VRDRP.

We enhanced the deterministic VRDRP by studying two significant variations of the problem: (i) The case of
multiple-product deliveries in which each product is stored in its own compartment in the vehicle, and (i)
the case of multiple-product deliveries in which all products are stored together in the vehicle’s single
compartment. The mathematical models, as well as new efficient algorithms that solve these problems to
optimality were developed and presented. For the case of compartmentalized load (Problem 1) 3000
problems were created and solved. The number of customers in these problems ranged from 5 to 50, while
the number of products was equal to 2, 3 and 4. For the case of unified load (Problem 2) we generated 2000
problems following the procedure described above. In this case the number of customers ranged from 5 to

1000, while the number of products ranged from 2 to 5. Based on the experimental results of the multiple-
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product problem, it has been demonstrated that the complexity of the compartmentalized case is significantly
higher from that of the unified load case. Furthermore, the computational time for the compartmentalized
case increases with a rate less than exponential with respect to the number of customers, while for the unified
load case it increases linearly. In addition, for the compartmentalized case, the computational time increases
exponentially with respect to the number of product types. This is due to the increase of the number of

combinations to be examined for each additional product.

In the Stochastic enhancement of the Vehicle Routing with Depot Returns Problem (SVRDRP), the customer
demands have been assumed to be independent random variables with known distributions. The SVRDRP
has been initially presented and solved by Yang et al. (2000). We analyzed this problem to further determine
the effect of the variance of the demand on the minimum expected cost function. It was found that the
expected cost of the route increases almost linearly with the standard deviation of the demand. Thus, in the
Ex-van business case, the consistency of Sales affects the distribution costs directly. Secondly, the problem
was analyzed in order to determine the interaction between the mean and the variance of the demand. It was
found that this interaction is significant, and, thus, in practice the randomness affects the expected cost more

for vehicles with lower capacity.

We studied the multiple products extension of the SVRDRP. Again, we focused on two cases; The
compartmentalized and the unified load case. For both cases we presented the characteristics of each
problem, novel methods to determine the minimum expected cost, and the theoretical results that permit one
to determine the optimal decision after serving each customer. Both cases were addressed using dynamic
programming, and for both it was proven that there exists an appropriate threshold function for each
customer that distinguishes two regions in the space of possible loads (after serving the customer): The
region of loads for which the optimal decision is to return to the depot, and the region for which the optimal
decision is to continue to the next customer. For both cases, through the execution of a large number of
randomly generated problems it was concluded that the increase of the vehicle capacity results in an almost
exponential increase in the computational time of the algorithm. On the other hand, if the capacity of the
vehicle is kept constant, and the number of customers is increased, the computational time increases linearly
with the number of customers. The unified load case proved to be significantly more complex than the

compartmentalized load one, as expected. This is mainly due to the increased complexity of the formulation,
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which includes additional minimization steps in order to identify the replenishment stock for each customer

site.

Finally, we investigated the Pickup and Delivery case of the SVRDRP. In this case the vehicle not only
delivers products to customers but it also picks up returned items from each customer (e.g. damaged goods,
or empty packaging). In this case there are additional issues to be considered. First, upon visiting the depot,
an additional decision needs to be made regarding the quantity of stock to be loaded onto the vehicle. This is
due to the fact that it may not be cost effective to load the vehicle to its full capacity, since there needs to be
some space available to accommodate the returned items as well without causing unnecessary depot returns.
Secondly, it was found that due to the direct relationship between the stock of the delivery product and the
space available for the pickup items, the properties of this case are quite different from those of the multiple
product one. The characteristics of the problem were presented, together with a novel method to determine
the minimum expected cost. By solving a large number of randomly generated problems, it was found that in
this case again the increase of the vehicle capacity results in an almost exponential increase in the
computational time of the algorithm. On the other hand, if the capacity of the vehicle is kept constant and the

number of customers is increased, the computation time increases linearly with the number of customers.

This work has produced a decision support framework, which can be utilized in fixed routing operations
(including Ex-van sales and material handling systems within a manufacturing plant) in an urban setting
environment (it is not practical to use the above framework in intercity environments since the significantly
larger arcs among the cities make the depot returns unfavourable). The routing approach developed in this
work can be implemented within a Fleet Management System (as shown in Figure 8.2), which performs both
initial routing (planning) and dynamic adjustments of the initial plan responding to disturbances of the
environment (execution). The planning part of the system may use the proposed algorithms, based on the
characteristics of the distribution environment, in order to develop initial optimal routes. These plans may be
distributed to the vehicle drivers either manually (paper-based operation) or electronically (via on-board
telematic equipment and communications through GSM/GPRS networks). In case of unexpected events
(such as traffic congestion, unexpected delays, etc.) during the plan execution, suitable variations of the

proposed algorithms may be employed for dynamic re-planning.
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Figure 8.2 A typical Fleet Management System Architecture (Larsen, 1999).

Thus, based on the algorithms described in this work, the operation of a wide variety of cases (deterministic
or stochastic demand, single or multiple products, delivery or pickup & delivery) can be improved
significantly: Ad-hoc non-optimal decisions are eliminated, minimizing total operating expenses, and

increasing the overall productivity of the distribution fleet.

8.2 Future Research Issues

In this work we addressed a single vehicle operation. Typically the Ex-van business model refers to a fleet of
vehicles (n vehicles), therefore bearing similarities to the Vehicle Routing Problem (VRP). The multiple
vehicle case can be transformed to the single vehicle case by assigning a priori a cluster of clients to each
vehicle (cluster-first-route-second policy). In practice, these assignments are typically made based on
historical data and field experience, or simply based on the geographical locations of the customer sites. An

interesting problem would be to integrate the customer assignment and the stochastic VRDRP problems is a
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unified model that would provide globally optimal, or near-optimal, solutions. This would resemble more a
route-first-cluster-second policy. The comparison of the two policies, the cluster-first-route-second vs. the
route-first-cluster-second, also posses significant issues. The customer network as well as the demand
distribution characteristics, could affect the solutions derived by each policy, and it would therefore be
challenging to identify which policy would be more efficient over a large amount of randomly generated

problem instances.

A second enhancement of this work would be to consider customer time-windows. For example, it is
common in the Ex-van business model for each customer (or at least for the large customers) to restrict
delivery within pre-agreed time-windows. These windows are usually strict (also called hard time-windows)
and if an Ex-van vehicle misses the time-window, the vehicle will not be allowed to serve the respective
customer, missing a potentially valuable sales opportunity. The predefined sequence of our problem is
compatible with the time-window characteristic, since spatial and temporal sequencing may be related.
Further investigation of the hard time-window case is interesting and may have significant practical

implications.

Service levels also present an opportunity for further research work. It is common in the Ex-van business
model to have different customers, some with a high profile (higher valued customers, with frequent, and/or
high value orders) and some with low (with infrequent, low value orders). These customers should be treated
differently, in a practical scenario. In its realization, each customer may be allocated a service factor S that
will be taken into account in the objective function. Depending on the value of S, one could give priority to
customers with a high S over others with a low S, or even skip visiting some low-S customers in favor of
more high profile ones. Modeling of this case may be inspired by the so-called Orienteering Problem.
Providing optimal, or near-optimal, solution methods will be both interesting and of significant practical

value.
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A.1 The Yang et al optimal solution

According to Yang et al. (2000), in order to identify an optimal route approach for a single vehicle, it is first
necessary to develop an efficient procedure to evaluate a particular route, that is, to find its expected cost
under an optimal restocking policy. Upon service completion at customer j, suppose the vehicle has a
remaining load z, and let fj(z) denote the total expected cost from node j onward. If S; represents the set of all
possible loads that a vehicle can have after service completion at customer j, then, fj(z) for z € §; satisfies the

dynamic programming recursion:

Cijr1+ ij+1 (z _é:k)pj+1,k + Z[b +2¢;00+ iz +Q—§k)]Pj+1,k

k:gngZ k:cfk >z
fi(z) = Minimum (A.1)
Cj0 + Co,j+1 + ijH(Q_é:k )pj+1,k

k=1

with the boundary condition:

fu(z) = cno ze S, (A.2)

In Eq. (A.1) the upper term in the minimization represents the expected cost of going directly to the next
customer, whereas the lower term represents the expected cost of the restocking action. Dynamic
programming is used to recursively determine the optimal policy. The properties of the optimal policy are

derived as follows.

LEMMA 1.

Ji(z) SH(O) + 2c; for all zesS;
Proof. From Eq. (A.1),

fi@<c g+ i+ 2 f1(Q=E)p s (A3)
k=1

Also because C satisfies the triangular inequality, Eq. (A.1) gives
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[ @ Sc; i+ ) [0 @=E)p s (A.4)
k=1

Combining Eq. (A.3) and (A.4) results in

fi(@)<cejo+cojm—c;jn+ /(0
Sciotco;+C ¢t /(0
(by the triangular inequality)
= 2¢q,; + [;(Q)

This seemingly simple lemma constitutes a key element to the proof of the following theorem.

THEOREM 1. For each customer j, there exists a quantity h;, such that the optimal decision, after serving

node j, is to continue to node j + 1 if z > h;, or return to the depot if z < h;.

Proof. To prove this theorem, we first show by induction that for all z € §}, f;(z) is a non-increasing function.

That is, for z;,z; € S;and z; < z3,

fiz1) 2fi(z2)

At terminal stage n, f,(z) = ¢y 1s independent of z. Hence f,(z) is monotonically non-increasing with respect
to z € S,. We will now prove that, if f;+;(z) is monotonically non-increasing with respect to z € S;+,, then fj(z)
is also monotonically non-increasing with respect to z € §;.

Let Hj(z) and H’j(z) denote the values of the upper and lower terms inside the minimisation in Eq. (A.1).

Then for z;,z; € S;and z; < 2,0, Hj(z;) — Hj(z2), after some simplification, can be written as

Hi(z)) = Hj(z2) =

D@ =N f1a=ENpjax+ Db+2¢,00+ f10(@+0—E) = f111(za = EOp s +

k:E¥ <z, kiz <&¥<z,
k k
+ D@ +0=E)—f11(z+ 0= EDNp s
kg >z,
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Because fj+(z) is monotonically non-increasing, the first and the third summation in the above equation is

positive. Hence,

Hiz) = Hjz2) 2 3 [b+2¢;, 0+ f1a(a+ Q=)= fra(: =P

kiz <&¥<z,

Using LEMMA 1 and the monotonicity of fj+;(z), it is now easy to show that Hj(z;) — Hy(z;) = 0. Hence Hj(z)
is a monotonically non-increasing function and fj(z) is the minimum of a non-increasing function H;(z) and a
constant function /’(z), hence it is monotonically non-increasing with respect to z € S;. Moreover there
exists 4;, such that the optimal decision, after serving node j, is to continue to node j+/ if z > A, or return to

the depot if z < &;. Note that h; = 0 if H;(z)<H’j(z) forall z € S;, and h; = Q it H'y(z)<Hj(z) ) for all z € §;.

The main implication of Theorem 1 is that, practically, it is easy to implement because it provides a simple
policy for the driver to follow. Second, this result can be used in the efficient algorithmic implementation of
the dynamic programming recursion. In particular, at each stage of the dynamic programming, the algorithm
computes /1;(z). Then it computes H;(z) in descending order of z until it exceeds the value of H’(z). The last
value of z for which Hj(z)< H’j(z) is the threshold 4; for this customer. If z is higher than the threshold the

vehicle can proceed to the next customer site, otherwise it will return to the depot.
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B.1 The Multiple product compartmentalized case formulation — 3 products

We assume that the vehicle is divided into 3 sections and each section is suitable for one type of product

only. Using the notation of Section 6.2.1, the dynamic programming formulation of the 3-product problem is

given below:

[i(2)525;,25;) =min

Cjj+1 T
, k k,
+ S (21 =617 0205 =6277,23; =637 )P jt k Pyl k, P j ey +

k T k
k&M <z, ki, <2y kyi P <z

j
k
+ Z Z Z[chﬂ,o +faO =& + le7Q2aQ3)]pj+l,klpj+l,kz Pjik, T

. kg ek £k
kyiz ;<G kyigy Sz, kyiby P <z

k,
+ Z Z 2[20_;+1,0 + /01,0, -8 +ZZjaQS)]Pj+l,klpj+l,kz Pjik, T

ek . kg gk
k& <zy; kyizy <80 kP <z,

k
+ z z z 2¢ 0+ /j41(01,02,03 &3 +Zsj)]Pj+1,k117j+1,k2Pj+1,k3 +

ek gk . k3
kp& Sz, k8, P <z kyizy <&y

k k
+ Z Z Z 2¢i0+ 11O =& +21;,0 -8 +22jaQS)]pj+1,k1pj+1,k2pj+1,k3 +

. Ly k2 g.e k3
kyizy <& kyizy <6y kyigy U <zy;

k k
+ Z Z Z 2ci0+ fi1(@Q1 =& +21;,02,05 -6 +Z3j)]pj+1,k1pj+1,k2pj+1,k3 +

K % k
kiizy ;< Vkyg, ZSsz kyizy 8y

k k
+ Z Z Z 2¢ 1,0+ /010100 =87 +23,,03 - &3 +Z3_1')]Pj+1,k1pj+l,k2 Pjsk, +

.gh . k2 p . k3
ki:& <z, kyizy <&y kyizy <&

k k) k
+ Z Z Z 2,00+ /(O =& 42,0, =& +22,03 - &3 +ZS_j)]pj+l,k1pj+l,k2p_j+1,k3

. Ly k. 3
kyiz <G kyizy <8y kyizy <8y

€j0+Co, 1t
m m, m

k k k
DD @ =&.0, =& 05 =) p s Pk, P,

ke =1ky=1k,=1

As it can be clearly observed, the first part of the minimization equation consists of eight distinct terms (the

eight rows after the c;j;+; row).
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Figure B.1. The solution space per customer point for three products.

The first of these terms represents the cost that is incurred if the vehicle proceeds to the next customer
directly and the stock of all three items on board is sufficient to fully satisfy the demand of the next customer
(Area A shown in red in Figure B.1). The next three terms represent the cases in which the stock of one
product (z,, z,, or z3) is not sufficient to satisfy the demand of the next customer, while the stock of the other

two products is.

The next three terms represent the cases in which the stock of only one product (z;, z,, or z3) is sufficient to
satisfy the demand of the next customer, while the stock of the other two products is not. The eighth term
represents the cost that is incurred if the vehicle proceeds to the next customer directly and the stock on

board of all products is not sufficient to fully satisfy the demand of the next customer.
The second part of the equation represents the cost that is incurred if the vehicle does not go to the next

customer directly, but rather first visits the Depot, refills its stock of all products, and then visits the next

customer in the sequence.
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C.1 Demand Distribution for the Multiple Product Delivery: Compartmentalized Load

For product 1

For product 2

Vehicle Capacity = (5,5)
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D.1 Demand Distribution for the Multiple Product Delivery: Unified Load

Demand Demand
for for
Product1 | Product2 | Customer 1 | Customer 2 | Customer 3 | Customer 4 | Customer 5
10 0 0,001 0,001 0,001 0,001 0,001
9 1 0,001 0,001 0,001 0,001 0,001
9 0 0,001 0,001 0,001 0,001 0,001
8 2 0,001 0,001 0,001 0,001 0,001
8 1 0,001 0,001 0,001 0,001 0,001
8 0 0,001 0,001 0,001 0,001 0,001
7 3 0,001 0,001 0,001 0,001 0,001
7 2 0,001 0,001 0,001 0,001 0,001
7 1 0,001 0,001 0,001 0,001 0,001
7 0 0,001 0,001 0,001 0,001 0,001
6 4 0,001 0,001 0,001 0,001 0,001
6 3 0,001 0,001 0,001 0,001 0,001
6 2 0,001 0,001 0,001 0,001 0,001
6 1 0,001 0,001 0,001 0,001 0,001
6 0 0,001 0,001 0,001 0,001 0,001
5 5 0,001 0,001 0,001 0,001 0,001
5 4 0,001 0,001 0,001 0,001 0,001
5 3 0,001 0,001 0,001 0,001 0,001
5 2 0,001 0,001 0,001 0,001 0,001
5 1 0,001 0,001 0,001 0,001 0,001
5 0 0,001 0,001 0,001 0,001 0,001
4 6 0,001 0,001 0,001 0,001 0,001
4 5 0,001 0,001 0,001 0,001 0,001
4 4 0,001 0,001 0,001 0,001 0,001
4 3 0,001 0,001 0,001 0,001 0,001
4 2 0,001 0,001 0,001 0,001 0,001
4 1 0,001 0,001 0,001 0,001 0,001
4 0 0,001 0,001 0,001 0,001 0,001
3 7 0,001 0,001 0,001 0,001 0,001
3 6 0,001 0,001 0,001 0,001 0,001
3 5 0,001 0,001 0,001 0,001 0,001
3 4 0,001 0,001 0,001 0,001 0,001
3 3 0,001 0,001 0,001 0,001 0,001
3 2 0,001 0,001 0,001 0,001 0,001
3 1 0,001 0,001 0,001 0,1 0,001
3 0 0,001 0,001 0,001 0,001 0,001
2 8 0,001 0,001 0,001 0,001 0,001
2 7 0,001 0,001 0,001 0,001 0,001
2 6 0,001 0,001 0,001 0,001 0,001
2 5 0,001 0,001 0,001 0,001 0,001
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2 4 0,001 0,001 0,001 0,001 0,6
2 3 0,001 0,001 0,2 0,001 0,001
2 2 0,2 0,1 0,001 0,2 0,01
2 1 0,01 0,21 0,01 0,01 0,01
2 0 0,001 0,001 0,001 0,001 0,001
1 9 0,001 0,001 0,001 0,001 0,001
1 8 0,001 0,001 0,001 0,001 0,001
1 7 0,001 0,001 0,001 0,001 0,001
1 6 0,001 0,001 0,001 0,001 0,001
1 5 0,001 0,001 0,001 0,001 0,001
1 4 0,001 0,001 0,7 0,002 0,001
1 3 0,7 0,01 0,01 0,01 0,2
1 2 0,01 0,6 0,01 0,01 0,101
1 1 0,01 0,01 0,01 0,6 0,01
1 0 0,01 0,01 0,001 0,01 0,01
0 10 0,001 0,001 0,001 0,001 0,001
0 9 0,001 0,001 0,001 0,001 0,001
0 8 0,001 0,001 0,001 0,001 0,001
0 7 0,001 0,001 0,001 0,001 0,001
0 6 0,001 0,001 0,001 0,001 0,001
0 5 0,001 0,001 0,001 0,001 0,001
0 4 0,001 0,001 0,001 0,001 0,001
0 3 0,001 0,001 0,001 0,001 0,001
0 2 0,001 0,001 0,001 0,001 0,001
0 1 0,001 0,001 0,001 0,001 0,001
0 0 0,001 0,001 0,001 0,001 0,001

Vehicle Capacity = 10
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E.1 Demand Distribution for the Pickup and Delivery example

For product to be delivered

For product to be picked up

Vehicle Capacity = 5
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F.1 The Characteristics of Equations 6.10 and 7.1

In this Appendix we will show that Equations 6.10 and 7.1 define a proper dynamic programming recursion.

In particular we will show that the way these equations have been written is a compact form of equivalent

but more extended dynamic programming equations. This will be done by focusing on Equation 6.10. The

discussion is completely analogous for Equation 7.1. Taking part (a) of Equation 6.10 we have:

)<

Q)<

Cj.j+1 T z ij+1(21 ~ehz, —sz)l?j+1(k1,k2)+
kyEf <z, ky:&E k2 <z,
- Y |20+, min [0 - (&M -z),0- 01)}7}“(1(1,1(2) +
k, 21<§k1 k2:§k2 <z L &M -2,26,<0
+ z z 2¢ 4,0 ¥, min Sj1(02,0 -6 — (" - Zz))}l’ju(kl,kz) +
kiE<z kyz<gt L F-2%0,20
+ 26].'"1,0 + k min I «fj-%-l(93 _(gk] —Zl),Q—93 _(gk?_ —22)):|pj+1(k1,k2)
kyzz <&M kyizy <&t L ¢ =220,<0-(§ ¥ -2,)
k k,
Cj 41t Z ijﬂ(zl =&M,2p =8k k) +
kl:é:kl <z k& © <z,
1 k,
+ Z 220j+1,0 +fi6 =& l—Z1),Q—6’1)]pjﬂ(kl,kz)+
C.’K _ZISHISQ kz <é:k1 k :§k2 <z
<:> 1“1 2 2 k
* i, Oin Z ZzCHLO +fj4(62,0-0, =(5™ _ZZ))]P]’H (k1. k) +
£ —2,0,<0 x .
= kiE<z kyizy<E?
T min Z ZZCHLO + /(63 ~(&" ~z2)),0-6;, (&~ —Zz))]ﬁjn(kbkz)
C.’K l—ZISe}SQ—(g Z_Zz) k1:21<§kl k2:22<§k2
k, k
€t Z ijﬂ(zl—f 20 =& )p jky k) +
k&<, k& © <z,
k,
+ Z Z_ch+1,o +f0 =S l—Z1),Q—91)]Pj+1(k1,kz)+
. k . gk
< min kia<gh kgt ) 3
.fk -2,<6 <0 + z z_zcj+l,0 Jrfj+1(‘927Q_92 —-(&™ _Zz))]Pj+1 (k1ak2)+
é: Z_ZZSHZSQ k 'fkl <z k2 <§k2
fkl—Z1S93$Q_(CEk2—Zz) 1= = 256 ) )
* Z Z?Cﬂw + /(03— =21),0-03-(5™ —Zz))]Pj+1 (k1,k2)
kiz <€ kyiz, <&
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The equivalence of sums (1) and (2) is true since all terms in sum (1) are linear with positive known

coefficients, which are the joint probability mass functions p ;. (k,k;). Thus the minimum of each linear

term in sum (2) is equal to the corresponding term of sum (1), in which the minimum is internal to the term.

The equivalence of sums (2) and (3) is true since each sum is linear and each term within sum (2) is positive.

Thus the global minimum of sum (3) is equal to the addition of the local minima in sum (2).

Similarly, for the second part of Equation (6.10) we have:

€jotCoj+1 7t
z Zf.i+1(‘94_§klaQ_‘94—sz)Pj+1(k1,k2)+
Ehi<e, £2<0-0,
- + z Z 20t minf (s — (&h —‘94)7Q—S1)}Pj+1(k1,k2)+ “4) <
min i ke &M -0<5,<0
64<§ ‘f SQ 64

0<6,<0
Z Z {ch+1’0+ min fistls2.0 sy —[F —(Q—94)]}}Pj+1(k1»k2)

gz,  0-6,<¢" 056,220-0,-¢"

Cj,O + cO,j+l +

> D Oy =0 =04 = ER)p (k) +
£h<o, £2<0-9

=N . +§k,_rf,}i§§ 0 z z 2¢ 10 + S5 = (& f-04),0- S1)]P,+1(k1,k2)+ (5) &
020,20 o <§*' “<Q[
+ min cjr0 + firls2,0—s7 —[& (0~ 94)]}]PJ+1(/€1 ky)

0<s,<20-0,-¢" §k1<9 0-8,<h

Cj,O +C()3j+1 +
> D 04 =M ,0 -0, =) p (k) +
sh<o,  £2<0-0,
= min + Z 2[201+10+fj+1(s1—(§ ' —04),0 - S1)]P,+1(k1,k2)+ (6)
0§94SQ 04<ggk] Cf
£ —0<s5,<0
0<5,<20-0,-&% | |+ Z z 2Cj+10 + fii52.0 =55 —[E% (0 - 94)]}]Pj+1(k1 ky)
"ISQ —
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The equivalence of sums (4) and (5) is true since all terms in sum (4) are linear with positive known

coefficients, which are the joint probability mass functions p ;. (k,k;). Thus the minimum of each linear

term in sum (5) is equal to the corresponding term of sum (4), in which the minimum is internal to the term.

The equivalence of sums (5) and (6) is true since each sum is linear and each term within sum (5) is positive.

Thus the global minimum of sum (6) is equal to the addition of the local minima in sum (5).

Bringing part (a) and (b) of Equation 6.10 back together using sums (3) and (6) we obtain:

/j(z1,22) =min

Cj it Z ij+1(21—fk‘,zz—sz)l?j+1(k1,k2)+
kid<z  kER<,
+ Z Z_ch+1,o +/n@—(& g —21),Q—91)]Pj+1(k1,k2)+
kiz<gt kR <z,
i k
250 Y Dot fi(02.0-0, (" o )pjath k)
£l -2,26,<0 k&M <z, k2:22<§f€2
k) _ . kz_
GBI ) z_zcj+l,0 + 0105 (&5 —2)),0-0; —(£"5 —Zz))]pj+1 (ky,k2)
+ z kyiz, <&
kiz <&M =

Cj,O +CO,j+l +

D D S0 ,0-0,-E5)p (k) +
&6,  &<0-6,
min b S e 1~ 00,051y ) +

0<6,<0 k1 2 <)
ol o < &250-0,

0<s,<20-6,-¢2 | |+ Z Z 2 1110+ f 41152, 0—57 —[£% —(Q—94)]}]P a1k ko)

i<, 0-g,<&"
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Cjjat Z ij+1(21_§k1,22 —sz)pj+1(k1,k2)+

kig<z kyg " <z

+ Y Do +fiaG-E " —21)’Q—91)]Pj+1(k1’k2)+

kiz<Et kpER<s,

2 2P0t n@.0-0, (" —22))]Pj+1 (ki kp )+

k:E<z kyiz,<ER

Y DY et a0 =N —2),0-6,-(£" 2 p s ko)

kiz<t kyiz<gf

& min
3 i —2<6<0
£2-2<6,<0
2 <0<0+(£2)) €j,0 T€0,j+1 F

0<6,<0
105550 D D S5 0-6,-E5)p (ki k) +
0<s,<20-6,-&" i<y, <00,
+ Z 220j+1’0+fj+1(S1 _(fkl _04)’Q_S1)]pj+1(kl’k2)+
g, 2506,
+ Z Z[zcﬁl,o +f41152,0-52 gk —(Q—94)]}]Pj+1 (ky,k2)

& h <6, 0-6,<& +2

The latter equation is a proper dynamic programming recursion.
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