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Εκτενής Περίληψη 
 

Στην  παρούσα διατριβή µελετήσαµε µια βασική περίπτωση του προβλήµατος δροµολόγησης οχηµάτων 

(Vehicle Routing Problem - VRP), στην οποία ένα όχηµα ξεκινά από την αποθήκη και εξυπηρετεί πελάτες 

µε προκαθορισµένη σειρά επίσκεψης, επιστρέφοντας στην αποθήκη για επαναφόρτωση όταν αυτό κρίνεται 

σκόπιµο. Στόχος είναι η εξυπηρέτηση όλων των πελατών και η ελαχιστοποίηση της διανυθείσας απόστασης 

(κόστους). Το συγκεκριµένο πρόβληµα έχει µεγάλο πρακτικό ενδιαφέρον, µε ενδεικτικές εφαρµογές που 

περιλαµβάνουν την περίπτωση πωλήσεων Ex-Van, καθώς και συστήµατα διακίνησης υλικών. Πέντε 

περιπτώσεις του παραπάνω προβλήµατος, µε αυξανόµενη πολυπλοκότητα, προτείνονται, αναλύονται και 

επιλύονται. Αυτές είναι: 

  

• ∆ιανοµή πολλαπλών τύπων προϊόντων µε γνωστή (deterministic) ζήτηση πελατών. Μελετήθηκαν δύο 

υπό-περιπτώσεις: α) κάθε τύπος προϊόντος φυλάσσεται σε ειδικό αποθηκευτικό χώρο οχήµατος µε 

προκαθορισµένη χωρητικότητα και β) όλοι οι τύποι προϊόντων αποθηκεύονται σε ένα (ενιαίο) χώρο.  

 

• ∆ιανοµή πολλαπλών τύπων προϊόντων µε στοχαστική (stochastic) ζήτηση πελατών. Μελετήθηκαν και οι 

δύο υποπεριπτώσεις που αναφέρονται παραπάνω. Σύµφωνα µε αυτή την περίπτωση, η ζήτηση του κάθε 

πελάτη δεν είναι γνωστή εκ των προτέρων, αλλά αποκαλύπτεται µόλις το όχηµα επισκεφτεί τον 

συγκεκριµένο πελάτη. Το συγκεκριµένο πρόβληµα είναι σηµαντικά πιο σύνθετο. Στην περίπτωση που η 

ζήτηση του πελάτη δεν µπορεί να καλυφθεί πλήρως, το όχηµα θα εξυπηρετήσει τον πελάτη µερικώς, θα 

επιστρέψει στην αποθήκη για επαναφόρτωση, και θα επανέλθει στον πελάτη ώστε να ικανοποιήσει και 

την εναποµένουσα ζήτησή του. 

 

• Παραλαβή και διανοµή (προϊόντων) µε στοχαστική (stochastic) ζήτηση πελατών. Σε αυτή την περίπτωση 

το όχηµα όχι µόνο παραδίδει προϊόντα στους πελάτες, αλλά και παραλαµβάνει επιστροφές από αυτούς 

(π.χ. κατεστραµµένα ή άδειες παλέτες ή υλικά συσκευασίας). Η ζήτηση του κάθε πελάτη για διανοµή ή 

παραλαβή δεν είναι γνωστή εκ των προτέρων, αλλά αποκαλύπτεται µόλις το όχηµα επισκεφτεί τον 

συγκεκριµένο πελάτη. Επιπρόσθετα, σε κάθε επιστροφή στην αποθήκη, θα πρέπει να αποφασισθεί πόσο 

απόθεµα θα φορτωθεί στο φορτηγό, ώστε να παραµείνει αρκετός άδειος χώρος για την παραλαβή των 

επιστρεφόµενων προϊόντων από τους επόµενους πελάτες.  
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Όπως αναφέρθηκε και προηγουµένως, οι πέντε παραπάνω περιπτώσεις παρουσιάζουν ιδιαίτερη πρακτική 

αξία στα Logistics (π.χ. πωλήσεις Ex-van) και σε συστήµατα διακίνησης υλικών (material handling 

systems). Στην πρώτη περίπτωση (πωλήσεις Ex-van) ένα όχηµα επισκέπτεται σε µια βάρδια έναν αριθµό 

πελατών, µε προκαθορισµένη σειρά επίσκεψης και στοχαστική ζήτηση. Σκοπός του οχήµατος είναι να 

εξυπηρετήσει πλήρως την ζήτηση όλων των πελατών, τηρώντας την σειρά επίσκεψης και επιστρέφοντας 

στην αποθήκη για επαναφόρτωση όποτε αυτό κρίνεται σκόπιµο. Η δεύτερη περίπτωση (material handling 

systems) βρίσκει εφαρµογή σε συστήµατα παραγωγής µε προκαθορισµένους διαδρόµους για αυτοκινούµενα 

οχήµατα (automatic guided vehicles – AGVs). Η ζήτηση του κάθε σταθµού εργασίας µπορεί να είναι 

γνωστή εκ των προτέρων (συστήµατα παραγωγής push – make to stock) ή στοχαστική (συστήµατα 

παραγωγής pull – just in time). Και πάλι, σκοπός του οχήµατος AGV είναι να εξυπηρετήσει πλήρως την 

ζήτηση όλων των σταθµών εργασίας, (τηρώντας την σειρά επίσκεψης) και επιστρέφοντας στην αποθήκη για 

επαναφόρτωση πρώτων υλών όποτε αυτό κρίνεται σκόπιµο. 

 

Στο Κεφάλαιο 2 της διατριβής παρουσιάζουµε σηµαντικά αποτελέσµατα της βιβλιογραφίας που σχετίζονται 

µε τα υπό διερεύνηση προβλήµατα. Αρχικά αναλύεται το πρόβληµα δροµολόγησης οχηµάτων (Vehicle 

Routing Problem - VRP). Συγκεκριµένα, παρουσιάζονται οι επεκτάσεις του προβλήµατος αυτού µε 

προκαθορισµένη χωρητικότητα (Capacitated VRP), µε πολλαπλές παραδόσεις ανά πελάτη (Split Delivery 

VRP), µε διανοµή και παραλαβή (Pickup and Delivery VRP) και µε στοχαστική ζήτηση (Stochastic VRP). Η 

δουλειά των Yang et al. (2000) αποτέλεσε έµπνευση για την παρούσα διατριβή. Οι Yang et al. διερεύνησαν 

το στοχαστικό VRP (SVRP) µε ένα ή περισσότερα οχήµατα, και προκαθορισµένη σειρά επίσκεψης. Σε 

αντίθεση µε την συνηθισµένη πρακτική της βιβλιογραφίας σύµφωνα µε την οποία όταν το όχηµα δεν έχει 

πλέον αρκετό απόθεµα για να εξυπηρετήσει τους επόµενους πελάτες επιστρέφει στην αποθήκη για 

αναπλήρωση (recourse action) οι Yang et al. προτείνουν µια πολιτική βέλτιστης αναπλήρωσης αποθέµατος 

η οποία ενσωµατώνεται στην αρχική δροµολόγηση του οχήµατος (proactive). Πιο συγκεκριµένα, τα σηµεία 

αναπλήρωσης αποθέµατος ενσωµατώνονται σκοπίµως στην διαδροµή του οχήµατος, ώστε η πιθανότητα 

αποτυχίας της διαδροµής, αλλά και το κόστος που αυτή η αποτυχία επιφέρει, να είναι µειωθεί, και το 

συνολικό αναµενόµενο κόστος της διαδροµής να ελαχιστοποιηθεί. 

 

Τέλος, στο κεφάλαιο αυτό, εντοπίζουµε τα πεδία για περαιτέρω έρευνα στη συγκεκριµένη περιοχή, και 

ορίζουµε τα προβλήµατα της παρούσας διατριβής, εξηγώντας την θεωρητική αλλά και πρακτική αξία αυτών. 
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Το Πρόβληµα ∆ροµολόγησης µε Επιστροφές στην Αποθήκη (VRDRP) 

 

Στο κεφάλαιο αυτό παρουσιάζουµε την βασική µορφή του Προβλήµατος ∆ροµολόγησης µε Επιστροφές 

στην Αποθήκη (VRDRP) µε γνωστή εκ των προτέρων (ντετερµινιστική) ζήτηση. Σκοπός αυτού του 

προβλήµατος είναι η ελαχιστοποίηση του κόστους (απόστασης) και η ταυτόχρονη εξυπηρέτηση όλων των 

πελατών µε προκαθορισµένη σειρά επίσκεψης και ένα όχηµα. Η αντικειµενική συνάρτηση του προβλήµατος 

είναι η ακόλουθη: 

Min E = 1,

1

0

1, +

−

=
+∑ ii

n

i

ii xc  + 0

1

1

0 i

n

i

i xc∑
−

=

+ i

n

i

i xc 0

2

0∑
=

    (Π–1) 

 

όπου ci,i+1 οι αποστάσεις µεταξύ των πελατών, ci0 µεταξύ πελατών και αποθήκης, και xi,i+1 , xi0 οι 

συντελεστές που ορίζουν αν ένα συγκεκριµένο τόξο είναι µέρος της διαδροµής. Επιπροσθέτως, 

εφαρµόζονται περιορισµοί δικτύου και χωρητικότητας του οχήµατος ώστε το πρόβληµα να προσεγγίσει την 

πραγµατικότητα. Η προτεινόµενη µέθοδος επίλυσης βασίζεται σε ∆υναµικό Προγραµµατισµό και ως πηγή 

έµπνευσης ήταν η δηµοσίευση των Yang et al. (2000). Συγκεκριµένα, οι εξισώσεις δυναµικού 

προγραµµατισµού που προτείνονται είναι οι ακόλουθες: 

 

Για k= n: 

Vn(z) = xn,0     και    z = 0, 1… Q-dn (Π-2) 

 

Για k= n-1: 

Vn-1(z)  =  xn-1,n + Vn(z)        αν z ≥  dn  (Π-3) 

 =  xn-1,0 + x0,n + Vn(z)        αν z < dn  (Π-4) 

 

Για k= n-2…1: 

Vk(z)  =   xk,0 + x0,k+1 + Vk+1(Q-dk+1)      αν z < dk+1  (Π-5) 

 =   min { xk,0 + x0,k+1 + Vk+1(Q-dk+1), xk,k+1 + Vk+1(z-dk+1)}   αν z ≥  dk+1  (Π-6) 

 

όπου Vk(z), k = n, n-1… 1 και z = 0… Q-dk, η ελάχιστη απόσταση από τον πελάτη k, από τον οποίο το 

όχηµα αναχωρεί µε απόθεµα ίσο µε z, µέχρι το τέλος της διαδροµής. Οι παραπάνω εξισώσεις λύνουν το 

πρόβληµα σταδιακά, ξεκινώντας από τον τελευταίο πελάτη, σύµφωνα µε την µεθοδολογία του δυναµικού 
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προγραµµατισµού. Σε κάθε βήµα (από k= n-2…1), το πρόγραµµα υπολογίζει δύο τιµές, την τιµή αν το 

όχηµα κατευθυνθεί απευθείας στον επόµενο πελάτη και αυτή εάν πάει στον επόµενο πελάτη µέσω της 

αποθήκης, και επιλέγει αυτή που παρέχει το ελάχιστο κόστος από το συγκεκριµένο βήµα µέχρι το τέλος της 

διαδροµής.  

 

Η λεπτοµερής ανάλυση του προβλήµατος έδειξε ότι η πολυπλοκότητά του αυξάνει εκθετικά µε το πλήθος 

των πελατών. Επιπροσθέτως, ο αριθµός των επιστροφών στην αποθήκη για αναπλήρωση αποθέµατος στην 

βέλτιστη λύση gbest είναι τις περισσότερες φορές µεταξύ των gmin ≤ gbest ≤ gmin+2 όπου gmin είναι ο ελάχιστος 

εφικτός αριθµός επιστροφών στην αποθήκη. Ο αλγόριθµος δυναµικού προγραµµατισµού αποδείχθηκε πολύ 

γρήγορος στην επίλυση µεγάλων προβληµάτων όπως ήταν αναµενόµενο. Για παράδειγµα, προβλήµατα µε 

100 πελάτες επιλύθηκαν σχεδόν στιγµιαία, και προβλήµατα µε 1000 πελάτες επιλύθηκαν σε 0.3 

δευτερόλεπτα, σε υπολογιστή µε χαρακτηριστικά Intel Pentium IV, 1.6 GHz CPU, 1Gb RAM.  

 

Παραλλαγές του Προβλήµατος VRDRP 

 

Στο κεφάλαιο 4 διερευνήσαµε: (i) την περίπτωση διανοµής πολλαπλών τύπων προϊόντων στην οποία ο κάθε 

τύπος προϊόντος αποθηκεύεται σε διαφορετικό αποθηκευτικό χώρο στο όχηµα, και (ii) την περίπτωση 

διανοµής πολλαπλών τύπων προϊόντων στην οποία όλα τα προϊόντα αποθηκεύονται σε έναν αποθηκευτικό 

χώρο.  

 

Και τα δύο προβλήµατα επιλύθηκαν µε κατάλληλες επεκτάσεις του αλγορίθµου δυναµικού 

προγραµµατισµού που παρουσιάστηκε παραπάνω. Η εξίσωση δυναµικού προγραµµατισµού για την πρώτη 

περίπτωση έχει ως εξής: 

 

    ),,,( 1,1,1111,00 ++++ −−++ iKKiiii dQdQVcc K     if  ,:},,1{  1, +<∈∃ ijj dzKj K   

),,( 1 Ki zzV K =            (Π-7) 

     ),,,(min{ 1,1,1111,00 ++++ −−++ iKKiiii dQdQVcc K  

                                 )},,,( 1,1,1111, ++++ −−+ iKKiiii dzdzVc K              if    .:},,1{ 1, +≥∈∀ ijj dzKj K    
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όπου dj,i (j=1,…K)  η ζήτηση για το προϊόν j από τον πελάτη i, , , ,1 ),,,( 1 nizzV Ki KK =  το ελάχιστο κόστος 

από τον πελάτη i µέχρι το τέλος της διαδροµής, εάν ο πελάτης i έχει εξυπηρετηθεί και το απόθεµα που έχει 

αποµείνει στο όχηµα για το προϊόν ,1 , Kjj ≤≤  είναι }. , ,0{ jijj dQz −∈ K  

 

Η δεύτερη περίπτωση κατά την οποία όλα τα προϊόντα αποθηκεύονται σε έναν αποθηκευτικό χώρο 

επιλύθηκε και αυτή µε δυναµικό προγραµµατισµό. Το πρόβληµα αρχικά µετασχηµατίστηκε στο αντίστοιχο 

VRRDP, αθροίζοντας την ζήτηση για το κάθε προϊόν σε κάθε πελάτη ώστε η συνολική ζήτηση του πελάτη 

να αναπαριστάται από ένα νούµερο. Για την επίλυση του προβλήµατος χρησιµοποιήθηκε ο αλγόριθµος που 

παρουσιάστηκε στην Ενότητα 3.4 αυτής της διατριβής, ο οποίος σχεδιάστηκε για την επίλυση του VRRDP 

µε ένα προϊόν. Ο αλγόριθµος αυτός υπολογίζει την διαδροµή του οχήµατος και µε µια µετατροπή σε αυτόν 

υπολογίζονται και οι βέλτιστες ποσότητες που πρέπει να φορτωθούν στο όχηµα, σε κάθε του επιστροφή 

στην αποθήκη. Αυτό γίνεται µε τον συνδυασµό της γνώσης της επιµέρους ζήτησης ανά προϊόν ανά πελάτη 

(από τα αρχικά δεδοµένα του προβλήµατος), και της βέλτιστης διαδροµής που θα ακολουθήσει το όχηµα 

(που έχει υπολογιστεί από τον αλγόριθµο). Γνωρίζοντας δυο διαδοχικές επιστροφές στην αποθήκη µέσα 

στην διαδροµή, µπορεί να υπολογιστεί το φορτίο που πρέπει να µεταφέρει το όχηµα για να ικανοποιήσει 

πλήρως την ζήτηση του κάθε πελάτη για κάθε προϊόν.   

 

Το κεφάλαιο ολοκληρώνεται µε την ανάλυση της απόδοσης των προτεινόµενων µεθόδων λύσης. 

Συγκεκριµένα επιλύθηκαν 3000 προβλήµατα για την πρώτη και 2000 προβλήµατα για την δεύτερη 

περίπτωση.  

 

Σχήµα Π.1. Οι υπολογιστικοί χρόνοι της πρώτης περίπτωσης. 
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Σχήµα Π.2. Οι υπολογιστικοί χρόνοι της δεύτερης περίπτωσης. 

 

Βάσει των αποτελεσµάτων αυτών, δείξαµε ότι η πολυπλοκότητα του προβλήµατος διανοµής πολλαπλών 

προϊόντων στην οποία ο κάθε τύπος προϊόντος αποθηκεύεται σε διαφορετικό αποθηκευτικό χώρο στο όχηµα 

είναι σηµαντικά µεγαλύτερη από αυτή του προβλήµατος διανοµής πολλαπλών προϊόντων στην οποία όλοι οι 

τύποι προϊόντος αποθηκεύονται σε έναν αποθηκευτικό χώρο (χύδην φορτίο). 

  

Το Στοχαστικό  Πρόβληµα ∆ροµολόγησης µε Επιστροφές στην Αποθήκη (SVRDRP) 

 

Στο Κεφάλαιο 5 αναλύουµε την στοχαστική έκδοση του Προβλήµατος ∆ροµολόγησης µε Επιστροφές στην  

Αποθήκη (SVRDRP). Σε αυτό το πρόβληµα η ζήτηση των πελατών µοντελοποιείται ως ανεξάρτητη τυχαία 

µεταβλητή µε γνωστές στατιστικές παραµέτρους (βάσει ιστορικής ζήτησης). Σκοπός του κεφαλαίου είναι η 

ανάλυση του προβλήµατος όσο αφορά στις στατιστικές παραµέτρους της ζήτησης. Η εξίσωση δυναµικού 

προγραµµατισµού για το στοχαστικό VRDRP σύµφωνα µε τους Yang et al. (2000) δίδεται παρακάτω: 
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όπου fj(z) το ελάχιστο κόστος από τον πελάτη j µέχρι το τέλος της διαδροµής, εάν το απόθεµα που έχει 

αποµείνει στο όχηµα µετά την εξυπηρέτηση του πελάτη j είναι z  και η στοχαστική ζήτηση του πελάτη j+1 

είναι kξ . Επιπρόσθετα, Q η χωρητικότητα του οχήµατος και pj+1,k η πιθανότητα να έχει ο πελάτης j+1 την 

ζήτηση kξ . 

 

Αρχικά, το πρόβληµα αναλύθηκε ώστε να εντοπίσουµε την επίδραση της διακύµανσης της ζήτησης των 

πελατών στο αναµενόµενο ελάχιστο κόστος της διαδροµής. Η ανάλυση καταδεικνύει ότι το αναµενόµενο 

ελάχιστο κόστος της διαδροµής αυξάνει σχεδόν γραµµικά µε την διακύµανση της ζήτησης. Έτσι, στην 

περίπτωση του Ex-van, η συνέπεια των πωλήσεων επηρεάζει άµεσα το κόστος διανοµής. Επιπροσθέτως το 

πρόβληµα αναλύθηκε µε σκοπό να καθοριστεί η σχέση µεταξύ του µέσου όρου της ζήτησης των πελατών 

και της διακύµανσης της ζήτησης. Στο συγκεκριµένο παράδειγµα που παρουσιάζεται, η ποσοστιαία αύξηση 

του ελάχιστου αναµενόµενου κόστους της διαδροµής (11.6%) για την περίπτωση µε τον χαµηλό µέσο όρο 

ζήτησης είναι µικρότερη από την αντίστοιχη ποσοστιαία αύξηση (16.7%) για την περίπτωση µε τον υψηλό 

µέσο όρο. Συµπερασµατικά, η τυχαιότητα επηρεάζει το αναµενόµενο ελάχιστο κόστος της διαδροµής 

περισσότερο σε οχήµατα µικρής χωρητικότητας.   

 

Επεκτάσεις του προβλήµατος SVRDRP 

 

Στο Κεφάλαιο 6 επεκτείνουµε το Στοχαστικό  Πρόβληµα ∆ροµολόγησης µε Επιστροφές στην Αποθήκη 

(SVRDRP) για να επιλύσουµε την περίπτωση διανοµής πολλαπλών προϊόντων. Όπως και στο Κεφάλαιο 4 

διερευνήθηκαν δύο περιπτώσεις: (i) η περίπτωση διανοµής πολλαπλών τύπων προϊόντων στην οποία ο κάθε 

τύπος προϊόντος αποθηκεύεται σε διαφορετικό αποθηκευτικό χώρο στο όχηµα, και (ii) η περίπτωση 

διανοµής πολλαπλών τύπων προϊόντων στην οποία όλα τα προϊόντα αποθηκεύονται σε ενιαίο αποθηκευτικό 

χώρο. Στο κεφάλαιο αυτό παρουσιάζουµε τα χαρακτηριστικά του κάθε προβλήµατος, νέες µεθόδους για τον 

υπολογισµό του ελάχιστου αναµενόµενου κόστους, και θεωρητικά αποτελέσµατα τα οποία µας επιτρέπουν 

τον προσδιορισµό της βέλτιστης απόφασης δροµολόγησης µετά την εξυπηρέτηση του κάθε πελάτη.  

 

Όσον αφορά την πρώτη περίπτωση, η εξίσωση δυναµικού προγραµµατισµού για δύο προϊόντα είναι η 

ακόλουθη: 
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όπου fj(z1, z2) το ελάχιστο κόστος από τον πελάτη j µέχρι το τέλος της διαδροµής, εάν το απόθεµα που έχει 

αποµείνει στο όχηµα είναι ),( 21 zz  και η στοχαστική ζήτηση του πελάτη j+1 είναι ),( 21 kk ξξ . Επιπρόσθετα, 

Q1 και Q2 η χωρητικότητα του κάθε αποθηκευτικού χώρου του οχήµατος, και ),( 2
,1

1
,1 21 kjkj

pp ++  οι πιθανότητες 

να έχει ο πελάτης j+1 την αντίστοιχη ζήτηση ),( 21 kk ξξ . 

 

Επιπλέον αποδείχθηκε ότι για κάθε πελάτη υπάρχει µια συνάρτηση κρίσιµων σηµείων, η οποία διαχωρίζει 

δυο περιοχές στον χώρο πιθανών φορτίων µετά την εξυπηρέτηση του πελάτη: Την περιοχή συνδυασµών 

φορτίων για τους οποίους η βέλτιστη απόφαση (µετά την εξυπηρέτηση του πελάτη) είναι να επιστρέψει το 

όχηµα στην αποθήκη, και την περιοχή για την οποία η βέλτιστη απόφαση είναι το όχηµα να συνεχίσει στον 

επόµενο πελάτη. Το αποτέλεσµα αυτό βασίζεται στο ακόλουθο θεώρηµα: 

 

ΘΕΩΡΗΜΑ 1: Για κάθε πελάτη j, υπάρχει µια συνάρτηση κρίσιµων σηµείων jj czzh =),(
*

2
*
1 , τέτοια ώστε η 

βέλτιστη απόφαση, µετά την πλήρη εξυπηρέτηση του πελάτη j είναι να προχωρήσει το όχηµα στον επόµενο 

πελάτη j+1 εάν ),( 21 zzh j ≥ cj αλλιώς να επιστρέψει στην αποθήκη. 

 

Η συνάρτηση jj czzh =),(
*

2
*
1  αποτυπώνεται γραφικά στο παρακάτω Σχήµα Π-3. 
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Σχήµα Π-3. Γραφική αναπαράσταση της συνάρτησης ορίου. 

 

Η απόδειξη του παραπάνω θεωρήµατος στηρίζεται στο γεγονός ότι το πρώτο µέρος της εξίσωσης δυναµικού 

προγραµµατισµού είναι µονότονα µειούµενη και το δεύτερο µέρος της εξίσωσης είναι σταθερά, ανεξάρτητη 

του φορτίου ),( 21 zz . Έτσι οι δύο όροι της εξίσωσης τέµνονται σε µια γραµµή που ορίζει την συνάρτηση 

jj czzh =),(
*

2
*
1 , όπως φαίνεται στο Σχήµα Π-3.  

 

Για την απόδειξη της µονοτονικότητας του πρώτου όρου της Εξίσωσης (Π-9), χρησιµοποιείται το ακόλουθο 

λήµµα, το οποίο αναπτύσσεται και αποδεικνύεται στην Ενότητα 6.2.2.: 

 

ΛΗΜΜΑ 1:    fj(z1, z2) ≤  fj(Q1, Q2)+ 2c0j για κάθε z1, z2 ∈ Sj 

 

Όσον αφορά την δεύτερη περίπτωση, στην οποία όλοι οι τύποι προϊόντος αποθηκεύονται σε έναν 

αποθηκευτικό χώρο η εξίσωση δυναµικού προγραµµατισµού είναι η ακόλουθη:: 

 

min),( 21 =zzf j  
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 (Π-10) 

 

όπου fj(z1, z2) το ελάχιστο κόστος από τον πελάτη j µέχρι το τέλος της διαδροµής, εάν το απόθεµα που έχει 

αποµείνει στο όχηµα είναι ),( 21 zz  και η στοχαστική ζήτηση του πελάτη j+1 είναι ),( 21 kk ξξ . Επιπρόσθετα, Q 

η χωρητικότητα του οχήµατος, και ),( 211 kkp j+  η πιθανότητα να έχει ο πελάτης j+1 την ζήτηση ),( 21 kk ξξ . 

 

Αντίστοιχα, για την περίπτωση διανοµής πολλαπλών προϊόντων στην οποία όλοι οι τύποι προϊόντος 

αποθηκεύονται σε έναν αποθηκευτικό χώρο (χύδην φορτίο) αναπτύχθηκε και αποδείχθηκε το συγγενές µε το 

Θεώρηµα 1,  Θεώρηµα 2: 

 

ΘΕΩΡΗΜΑ 2: Για κάθε πελάτη j, υπάρχει µια συνάρτηση ορίου j
u

j
u czzh =),( 21 , τέτοια ώστε η βέλτιστη 

απόφαση, µετά την πλήρη εξυπηρέτηση του πελάτη j είναι να προχωρήσει το όχηµα στον επόµενο πελάτη j+1 

εάν j
u

j
u czzh ≥),(

*
2

*
1 , αλλιώς να επιστρέψει στην αποθήκη. 

 

Με βάση το δεύτερο αυτό θεώρηµα, µπορεί να προσδιοριστεί η βέλτιστη απόφαση για τον προορισµό του 

οχήµατος αφότου εξυπηρετήσει τον πελάτη j. Εάν ο συνδυασµός των φορτίων ),( 21 zz  είναι τέτοιος ώστε 

j
u

j
u czzh ≥),(

*
2

*
1  τότε το όχηµα πρέπει να προχωρήσει στον επόµενο πελάτη. Εάν δεν ικανοποιείται η 
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παραπάνω ανισότητα, τότε το όχηµα πρέπει να επιστρέψει στην αποθήκη. Και σε αυτή την περίπτωση η 

συνάρτηση j
u

j
u czzh =),( 21  είναι η τοµή των δύο όρων της Εξίσωσης (Π-10). 

 

Και οι δύο περιπτώσεις µοντελοποιήθηκαν και επιλύθηκαν για δύο προϊόντα, αλλά τα αποτελέσµατα 

µπορούν να επεκταθούν σε n προϊόντα (βλέπε Appendix B για την µαθηµατική διατύπωση του προβλήµατος 

µε 3 προϊόντα στην οποία ο κάθε τύπος προϊόντος αποθηκεύεται σε διαφορετικό αποθηκευτικό χώρο στο 

όχηµα).  

 

Η απόδοση των προτεινόµενων µεθόδων αναλύθηκε µε την επίλυση σηµαντικού αριθµού προβληµάτων ανά 

περίπτωση (30,000 ανά περίπτωση). Και για τις δυο περιπτώσεις, µέσω την εκτέλεσης σηµαντικού αριθµού 

τυχαίως δηµιουργηµένων προβληµάτων, βρέθηκε ότι η αύξηση της χωρητικότητας του οχήµατος έχει ως 

αποτέλεσµα την σχεδόν εκθετική αύξηση του υπολογιστικού χρόνου της λύσης. Από την άλλη, εάν η 

χωρητικότητα του οχήµατος παραµείνει σταθερή, ο υπολογιστικός χρόνος του αλγορίθµου αυξάνεται σχεδόν 

γραµµικά µε το πλήθος των πελατών.  Τα αποτελέσµατα του αλγορίθµου της περίπτωσης διανοµής δυο 

προϊόντων στην οποία ο κάθε τύπος προϊόντος αποθηκεύεται σε διαφορετικό αποθηκευτικό χώρο στο όχηµα 

(συνολική χωρητικότητα του οχήµατος Q) φαίνονται στο Σχήµα Π-4. 

 

Περίπτωση 2 προιόντων
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Σχήµα Π-4. Τα αποτελέσµατα του αλγορίθµου για 2 προϊόντα που αποθηκεύονται ξεχωριστά. 
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Η δεύτερη περίπτωση αποθήκευσης προϊόντων σε ένα ενιαίο χώρο αποδείχθηκε σηµαντικά πιο σύνθετη. 

Αυτό οφείλεται στα επιπρόσθετα βήµατα ελαχιστοποίησης του µοντέλου γραµµικού προγραµµατισµού, 

ώστε να εντοπισθούν οι βέλτιστες ποσότητες αποθέµατος που πρέπει να φορτωθούν στο όχηµα, µετά από 

κάθε επιστροφή αυτού στην αποθήκη. Η διερεύνηση της απόδοσης του αλγορίθµου της περίπτωσης αυτής 

παρουσιάζονται στο Σχήµα Π-5. Είναι ξεκάθαρο ότι η αύξηση της χωρητικότητας του οχήµατος έχει ως 

αποτέλεσµα την σχεδόν εκθετική αύξηση του υπολογιστικού χρόνου της λύσης. Από την άλλη, εάν η 

χωρητικότητα του οχήµατος παραµείνει σταθερή, ο υπολογιστικός χρόνος του αλγορίθµου αυξάνεται σχεδόν 

γραµµικά µε το πλήθος των πελατών.   
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Σχήµα Π-5. Τα αποτελέσµατα του αλγορίθµου για χύδην φορτίο. 

 

Το VRDRP µε Στοχαστικές ∆ιανοµές και Παραλαβές  

 

Στο Κεφάλαιο 7 εξετάζουµε την περίπτωση ∆ιανοµών και Παραλαβών του VRDRP µε άγνωστη εκ των 

προτέρων (στοχαστική) ζήτηση. Σε αυτή την περίπτωση το όχηµα δεν διανέµει µόνο προϊόντα αλλά και 

παραλαµβάνει επιστρεφόµενα προϊόντα από τους πελάτες που επισκέπτεται (π.χ. άδειες παλέτες, προϊόντα 

που έχουν λήξει ή που έχουν καταστραφεί). Σκοπός του προβλήµατος είναι η ελαχιστοποίηση της 
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διανυθείσας απόστασης (κόστους) υπό στοχαστική ζήτηση τόσο για τα προϊόντα διανοµής όσο και για αυτά 

της παραλαβής.  

 

Σε αυτή την περίπτωση πρέπει να ληφθούν υπόψη επιπλέον παράγοντες. Μετά την επίσκεψη του οχήµατος 

στην αποθήκη, πρέπει να ληφθεί µια επιπλέον απόφαση, σχετικά µε την ποσότητα του προϊόντος για 

πώληση που θα φορτωθεί στο όχηµα. Αυτό συµβαίνει λόγω του γεγονότος ότι το όχηµα δεν µπορεί απλά να 

φορτωθεί έως το µέγιστο της χωρητικότητάς του, καθότι πρέπει να προβλεφθεί κενός χώρος ώστε το όχηµα 

να µπορεί να παραλάβει και επιστρεφόµενα προϊόντα, αποφεύγοντας επιπρόσθετες επιστροφές στην 

αποθήκη.  

 

Η συνάρτηση δυναµικού προγραµµατισµού για την περίπτωση ∆ιανοµών και Παραλαβών του VRDRP µε 

άγνωστη εκ των προτέρων (στοχαστική) ζήτηση δίδεται παρακάτω: 
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όπου fj(z, b) το ελάχιστο κόστος από τον πελάτη j µέχρι το τέλος της διαδροµής, εάν το απόθεµα που έχει 

αποµείνει στο όχηµα είναι z για το προϊόν διανοµής και b για το προϊόν παραλαβής και η στοχαστική ζήτηση 

του πελάτη j+1 είναι ),( mk ρξ  αντίστοιχα. Επιπρόσθετα, Q η χωρητικότητα του οχήµατος, και 

),(
,1,1 mjkj

p ++ π  οι πιθανότητες να έχει ο πελάτης j+1 την αντίστοιχη ζήτηση ),( mk ρξ . 

 

Στην περίπτωση που η επιστροφή στην αποθήκη γίνει µετά την εξυπηρέτηση του πελάτη j+1 τότε η 

ποσότητα του προϊόντος που θα φορτωθεί στο όχηµα µπορεί να είναι τέτοια ώστε η ζήτηση του πελάτη j+1 

να ικανοποιηθεί πλήρως (για προϊόντα παράδοσης ή παραλαβής). Εάν όµως, η επιστροφή στην αποθήκη 

συµβεί πριν την εξυπηρέτηση του πελάτη j+1 τότε µια επιπλέον (αµέσως επόµενη) επιστροφή στην αποθήκη 

θα καταστεί απαραίτητη στην περίπτωση που η ποσότητα που φορτώθηκε στο όχηµα (ή ο χώρος που είχε 

µείνει για τα προϊόντα που θα παραληφθούν) δεν είναι επαρκής να ικανοποιήσει πλήρως την ζήτηση του 

συγκεκριµένου πελάτη.  
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Σχήµα Π-6. Τα αποτελέσµατα του αλγορίθµου της περίπτωσης διανοµών και παραλαβών. 
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∆ια της εκτέλεσης σηµαντικού αριθµού (30,000) τυχαίως δηµιουργηµένων προβληµάτων για την περίπτωση 

των διανοµών και παραλαβών του SVRDRP (Σχήµα Π-6), βρέθηκε ότι η αύξηση της χωρητικότητας του 

οχήµατος έχει ως αποτέλεσµα την σχεδόν εκθετική αύξηση του υπολογιστικού χρόνου του αλγορίθµου. Από 

την άλλη, εάν η χωρητικότητα του οχήµατος παραµείνει σταθερή, ο υπολογιστικός χρόνος του αλγορίθµου 

αυξάνεται σχεδόν γραµµικά µε το πλήθος των πελατών.  

 

Συµπεράσµατα 

 

Στην  παρούσα διατριβή µελετήθηκε µια βασική περίπτωση του προβλήµατος δροµολόγησης οχηµάτων 

(Vehicle Routing Problem - VRP), στην οποία ένα όχηµα ξεκινά από την αποθήκη και εξυπηρετεί πελάτες 

µε προκαθορισµένη σειρά επίσκεψης, επιστρέφοντας στην αποθήκη για επαναφόρτωση όταν αυτό κρίνεται 

σκόπιµο. Στόχος είναι η εξυπηρέτηση όλων των πελατών και η ελαχιστοποίηση της διανυθείσας απόστασης 

(κόστους). Η συνεισφορά της διατριβής συνοψίζεται στα ακόλουθα: 

  

• Για πρώτη φορά µελετήθηκε το πρόβληµα διανοµής πολλαπλών προϊόντων µε προκαθορισµένη σειρά 

επίσκεψης, και οι δύο υπό-περιπτώσεις αυτού: α) κάθε τύπος προϊόντος να φυλάσσεται σε ειδικό 

αποθηκευτικό χώρο οχήµατος µε προκαθορισµένη χωρητικότητα και β) όλοι οι τύποι προϊόντων να 

αποθηκεύονται στον ένα (ενιαίο) χώρο του οχήµατος. Προτάθηκε αλγόριθµος βέλτιστης επίλυσής του. 

 

• Για πρώτη φορά αναλύθηκε το πρόβληµα διανοµής προϊόντος µε προκαθορισµένη σειρά επίσκεψης και 

στοχαστική ζήτηση, όσο αφορά στην επίδραση της διακύµανσης αλλά και του µέσου όρου της ζήτησης 

στο ελάχιστο αναµενόµενο κόστος της διαδροµής. 

 

• Για πρώτη φορά µελετήθηκε το πρόβληµα διανοµής πολλαπλών προϊόντων µε προκαθορισµένη σειρά 

επίσκεψης µε στοχαστική ζήτηση, και οι δύο υπό-περιπτώσεις αυτού: α) κάθε τύπος προϊόντος να 

φυλάσσεται σε ειδικό αποθηκευτικό χώρο οχήµατος µε προκαθορισµένη χωρητικότητα και β) όλοι οι 

τύποι προϊόντων να αποθηκεύονται στον ένα (ενιαίο) χώρο του οχήµατος. Προτάθηκε αλγόριθµος 

ανεύρεσης του ελάχιστου αναµενόµενου κόστους της διαδροµής και πολιτική ανεύρεσης της διαδροµής 

η οποία στηρίχτηκε στα Θεωρήµατα που αναπτύχθηκαν και παρουσιάζονται στην διατριβή. 
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• Για πρώτη φορά µελετήθηκε το πρόβληµα διανοµής και παραλαβής προϊόντων µε προκαθορισµένη 

σειρά επίσκεψης και στοχαστική ζήτηση. Προτάθηκε αλγόριθµος ανεύρεσης του ελάχιστου 

αναµενόµενου κόστους της διαδροµής και πολιτική ανεύρεσης της διαδροµής. 

 

Τα αποτελέσµατα της παρούσας διατριβής µπορούν να χρησιµοποιηθούν σε ένα σύστηµα υποστήριξης 

λήψης αποφάσεων, για µια πληθώρα περιπτώσεων (γνωστή ή άγνωστη ζήτηση πελατών, ένα ή πολλαπλά 

προϊόντα, παραδώσεις, ή παραδώσεις και παραλαβές): Με αυτό τον τρόπο µπορούν να εξαλειφθούν οι 

τυχαίες αποφάσεις δροµολόγησης, ελαχιστοποιώντας τα συνολικά λειτουργικά κόστη της εταιρίας, και 

αυξάνοντας την συνολική παραγωγικότητα και τα επίπεδα εξυπηρέτησης των πελατών της.    
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Abstract 

 

 
In this dissertation a basic case of the Vehicle Routing Problem (VRP) is studied, in which a single vehicle 

starts from its depot and serves customers in a predefined sequence. The objective is to serve all customers 

and minimize travel distance (cost). This problem is of significant practical interest; indicative applications 

include Ex-van sales and Material Handling systems. Several cases of this problem, of increasing 

complexity, are posed, analyzed and solved. These cases are: 

 

• Multiple product delivery with deterministic customer demand. Two sub-cases are studied: a) the 

compartmentalized load and b) the unified load case. The mathematical models, as well as new efficient 

algorithms that solve these problems to optimality have been developed and analyzed. 

• Multiple product delivery with stochastic customer demand. Both sub-cases mentioned above are 

studied. For both cases we present the characteristics of the respective problems, novel methods to 

determine the minimum expected cost, and the theoretical results that permit one to determine the 

optimal decision after serving each customer. Both cases have been addressed using dynamic 

programming, and for both it has been proven that there exists an appropriate threshold function for each 

customer, which can be used to determine the optimal decision.  Extensive analysis of the proposed 

algorithms has been conducted. 

• Pickup and delivery (of product) with stochastic customer demands. In this case the vehicle not only 

delivers products to customers but it also picks up returned items from each customer (e.g. damaged 

goods, or empty packaging). The characteristics of the problem have been presented, together with a 

novel method to determine the minimum expected cost, and the optimal decision after serving each 

customer.  The proposed method has also been analyzed extensively. 

 

This work may support a decision support framework, which can be utilized in fixed routing operations for a 

wide variety of cases and applications (deterministic or stochastic demand, single or multiple products, 

delivery or pickup & delivery): Thus, ad-hoc sub-optimal decisions can be eliminated, minimizing total 

operating costs, and increasing the overall productivity and customer service of the distribution fleet. 
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Chapter 1 
Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1 Introduction 

 

One of the areas of Operation Research that has attracted significant research attention at least for the past 30 

years is the area of optimizing the transportation and distribution of goods. In an urban environment 

distribution represents, on average, the highest portion of logistics costs (Ballou, 1999). In some special 

cases, such as the beverage or the alcoholic drinks industry, distribution costs account for 70% of the value-

added activity costs (Golden and Wasil, 1987). It, therefore, becomes apparent that cost effectiveness of 

transportation and distribution is of outmost importance for the competitiveness of this and other sectors. The 
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main parameters that influence transport and distribution activities, and, therefore, affect costs directly 

include: 

 

• Transport / Distribution Network (network architecture, number and location of facilities such as hubs 

and depots, the number and location of destination customers, or sites, etc.) 

• The number and capacity of vehicles in the fleet 

• Service parameters (delivery unit loads, time windows, etc.) 

• Operational parameters (shifts, activity plans, etc) 

• Fleet planning – routing. 

 

This dissertation focuses on the last area, and especially on vehicle routing. The design of optimal or near 

optimal delivery routes, in the case in which distribution vehicles originate from a central depot and serve a 

number of customer points, is generally referred in the bibliography as the Vehicle Routing Problem (VRP) 

(Toth and Vigo, 2002b). When solving the VRP, it is common in the literature to assume that the customer 

demand is known in advance. This assumption is valid in a range of practical cases, in which delivery is 

performed based on fixed customer orders. Many algorithms have been proposed to address these cases 

(Dantzig and Ramser, 1959; Clarke and Wright, 1964; Assad, 1988; Golden & Assad, 1988; Laporte and 

Osman, 1995; Toth and Vigo, 2002b). However, in other cases, the customer demand may be random, and/or 

other parameters may be stochastic (e.g. travel time / cost of the network arcs). Routing problems that 

involve randomness are characterized as Stochastic Vehicle Routing Problems (SVRP).  

 

The Vehicle Routing Problem with Stochastic Demands (VRPSD) belongs to a category of a priori 

optimization problems (Bertsimas et al, 1990) for which it is impractical to consider an a posteriori approach 

(according to which an optimal solution is recomputed every time the value of a stochastic demand is 

revealed). Instead, an a priori solution attempts to obtain the best available solution over a range of problem 

scenarios, prior to the realization of any single scenario. According to Roberts and Hadjiconstantinou (1998), 

who evaluated the computational performance of both types of solution methods, the a priori solution of a 

Vehicle Routing Problem with random demand resides, on average, within 8% of the solution obtained by a 

reoptimization-based, a posteriori strategy. 
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In this dissertation a basic case of the VRP is studied; in this case, a single vehicle starts from its depot and 

serves customers in a predefined sequence. The demand of each customer is either known in advance 

(deterministic) or not (stochastic). The distances (travel times or costs), among all points of the network 

(depot and customer points) are fixed and known. The quantity to be loaded to the vehicle cannot exceed its 

capacity. Upon completion of service at each customer site, the vehicle has to either (a) travel to the next 

customer, or (b) return to the depot in order to reload (and/or unload), and resume its route. Note that even 

though the stock on board the vehicle may be adequate to serve the next client, a preemptive return to 

replenish the vehicle’s stock may be beneficial in order to avoid future returns from a customer site that is 

further away from the depot. The objective is to serve all customers and minimize travel distance (cost). The 

predefined customer visit sequence is a significant restriction, which, nevertheless is encountered in many 

practical cases (due to hard customer time windows, traffic avoidance practices, etc.).  

 

For the single product case both the deterministic and the stochastic version of this problem have been 

addressed in the literature (see Yang et al. (2000)). In this dissertation more complex cases are studied, 

which also present significant practical value. These cases are: 

 

• Multiple product delivery with deterministic customer demand. Two sub-cases are studied: a) the 

compartmentalized load and b) the unified load case.  

• Multiple product delivery with stochastic customer demand. Both sub-cases mentioned above are studied 

• Pickup and delivery (of product) with stochastic customer demands. 

 

All five cases above are of significant practical value in the Logistics industry (e.g. Ex-van Sales) and in 

material handling within manufacturing plants with fixed route vehicles. The remainder of this dissertation is 

structured as follows: Chapter 2 presents the most relevant research to-date in this field. Furthermore, in this 

chapter we identify the research gaps, we define the problems to be addressed, and discuss the theoretical 

value and practical implications of these problems. 

 

In Chapter 3 we present the basic form of the Vehicle Routing with Depot Returns Problem (VRDRP) under 

deterministic demand. The problem characteristics, the mathematical model and an optimal solution method 

is described. This method is based on dynamic programming and has been inspired by the work of Yang et 

al. (2000).  
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In Chapter 4 we propose and investigate: (i) the case of multiple-product deliveries in which each product is 

stored in its own compartment in the vehicle and (ii) the case of multiple-product deliveries in which all 

products are stored together in the vehicle’s single compartment. The problem characteristics, the 

mathematical models and optimal solution methods are described. The Chapter concludes with performance 

analysis of the solution method. 

 

In Chapter 5 we present the stochastic version of the Vehicle Routing with Depot Returns Problem 

(SVRDRP). In this problem the customer demands are assumed to be independent random variables with 

known distributions. The purpose of this chapter is to analyze the problem with respect to critical parameters 

that characterize the randomness of the demand. This lays the foundation for considerable enhancements in 

the next chapters.  

 

In Chapter 6 we extend the Stochastic Vehicle Routing with Depot Returns Problem (SVRDRP) to address 

the case of distributing multiple product types. In line with Chapter 4 we address two cases; 

compartmentalized and unified load. In this chapter we present the characteristics of each problem, new 

methods to determine the minimum expected cost, and the theoretical results that permit us to determine the 

optimal decision after serving each customer. The performance of the proposed methods is analyzed by 

solving a large number of sample problems per case.   

 

In Chapter 7 we examine the Pickup and Delivery case of the VRDRP under random demand. The 

characteristics and the mathematical formulation of the problem are presented, together with a new method 

to determine the minimum expected cost. Furthermore the proposed method is used to determine the optimal 

decision after serving each customer. Finally, the performance of the proposed methods is analyzed by 

solving a large number of sample problems.  

 

The dissertation concludes with Chapter 8, in which the contribution of this dissertation and the related 

conclusions are presented, together with future research directions. 
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Chapter 2 
Background 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1 Introduction 

 

This Chapter presents the main contributions of the literature that are directly related to the problem(s) 

studied in this dissertation. We overview the basic types of goods distribution in an urban environment, and 

define the related problems addressed in this work. For these problems, we review the most relevant research 

to-date and identify promising areas for further work. The Chapter concludes by discussing new 

contributions of the present dissertation in these areas. 
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2.2 The Urban Distribution Environment 

 

The Urban Distribution Environment represents one of the most complex settings of operations for a 

distribution company. Congested road networks, one-way systems, traffic peaks at particular times and areas 

are some of the complexity factors that characterize this setting.  

 

One may distinguish at least two ways of distributing goods in urban areas: Standard deliveries and Ex-van 

sales (Giaglis et al., 2004). While in both cases operations are performed within a typical delivery network 

with N warehouses and M customers, that are served by a fleet of K vehicles, these two cases differ in the 

way they handle demand. In standard deliveries the demand is known (usually driven by pre-placed customer 

orders), while Ex-van sales operate in an unknown demand environment, in which orders are placed during 

delivery at the customer site. Table 2.1 summarizes the main attributes of the two modes of urban deliveries. 

 

Table 2.1. Characteristics of Standard Deliveries vs. Ex-van Sales in Urban Distribution 

 

Standard Deliveries Ex-van Sales 

Fixed geographical Network 

Fixed truck and fleet capacity  

Known demand per customer site 

 

Unknown demand per sales point 

Fleet delivers based on orders 

 

Orders are not known in advance (only an estimate of 

aggregate demand in the sales area exists) 

Fixed schedules and delivery time windows 

 

More relaxed schedules and delivery time windows 

Truck routes determined a priori based on demand, network 

traffic, and other parameters in a near-optimal way 

Distribution of work per truck is based on past area sales and 

business agreements with the drivers  

 

 

A significant amount of research has focused on standard deliveries in the past. Ex-van Sales have not 

received as much attention, and it is this type of Urban Distribution that forms the motivation for the work of 

this dissertation.  
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2.3 The Vehicle Routing Problem 

 

Transportation and distribution contribute approximately 20% to the total costs of a product (Reimann et al., 

2003). These costs incur between any two subsequent links of the supply chain, and between the final link 

and the end customer. Both industry and academia have long recognized the potential for optimization of 

operations in this area. Formally, most problems in goods distribution are related to the Vehicle Routing 

Problem (VRP). This problem is a generalization of the classic Traveling Salesman problem (TSP) 

(Christofides, 1979; Cornuejols and Nemhauser, 1978; Gendreau et al, 1997), and seeks a set of efficient 

vehicle routes to serve a number of geographically dispersed customers. The VRP was introduced by 

Dantzig and Ramser (1959), almost 50 years ago; in this original work they described a practical application 

concerning the delivery of gasoline to service stations, and proposed the first mathematical programming 

formulation and algorithmic approach to solve it. Since then, the VRP has received considerable research 

attention, and has become one of the fundamental problems of Operations Research. 

 

The objective of the VRP is to deliver goods to a set of customers with known demands following minimum-

cost vehicle routes originating from and terminating at a depot (Clarke and Wright, 1964; Assad, 1988; 

Golden & Assad, 1988; Laporte and Osman, 1995). A very useful survey of significant research results in 

this problem is given by Toth & Vigo (2002b). 

 

According to Stewart and Golden (1983), a compact and convenient formulation for the VRP can be written 

as follows: 

Minimize   ∑∑
ji

ijkij

k

xc

,

 

subject to ∑ ≤
ji

ijki Qx

,

µ   k = 1,2,…,m 

[ ] mijk Sxx ∈=  

where:   

cij = the cost of traveling from i to j 

  xijk = 1 if vehicle k travels from i to j and xijk = 0 otherwise 

  m = the number of vehicles available 

Sm = the set of all feasible solutions in the m-traveling salesman problem (m-TSP) 
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  µi = the amount demanded at location i  

  Q = the vehicle capacity. 

 

From the above formulation it is clear that the VRP is an integer-programming problem. It is also an NP-hard 

problem (for information about the theory of NP-completeness refer to Garey and Johnson 1979), and, 

therefore, practical problem instances cannot be solved to optimality within reasonable time; in fact there are 

no exact algorithms available that consistently solve problems with more than 50–75 customers (see Toth & 

Vigo, 2002).  

 

2.3.1 Modeling approaches for the VRP 

 

According to Toth & Vigo (2002b), three basic modeling approaches have been proposed in the literature for 

the VRP. The models of the first type are known as vehicle flow formulations and they use integer variables 

associated with each arc or edge of the graph (modeling the distribution network), which count the number 

of times the arc or edge is traversed by a vehicle. These are the most frequently used models for the basic 

versions of the VRP; they are particularly suited for cases in which a) the cost of the solution can be 

expressed as the sum of the costs associated with the arcs, and b) the most relevant constraints concern the 

direct transition between the customers within the route, so they can be effectively modeled through an 

appropriate definition of the arc set and the arc costs. On the other hand, vehicle flow models cannot be used 

to handle some practical issues, such as in cases in which the cost of a solution depends on the overall vertex 

sequence, or on the type of vehicle assigned to a particular route (Toth & Vigo 2002b). The second family of 

models is based on the so-called commodity flow formulation. In this type of model, additional integer 

variables are associated with the arcs or edges and represent the flow of commodities along the paths 

traveled by the vehicles. Only recently have models of this type been used as the basis for the exact solution 

of Capacitated VRP (CVRP).  

 

The models of the third family have an exponential number of binary variables, each associated with a 

different feasible circuit. The VRP is then formulated as a Set-Partitioning Problem (SPP) seeking a 

collection of circuits that minimize cost, serving each customer once and possibly satisfying additional 

constraints. A main advantage of this model is that it allows for extremely general route costs (for modeling 

costs that depend on the sequence of arcs and/or on the vehicle type). Moreover, the additional side 
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constraints do not need to take into account restrictions concerning the feasibility of a single route. As a 

result, the constraints can often be replaced with a compact set of inequalities. This produces a formulation, 

the linear relaxation of which is typically much tighter than that of the previous model types (Toth and Vigo, 

2002b).  

 

2.3.2 Extending the fundamental VRP 

 

In an effort to take into consideration important practical issues, the fundamental VRP has been extended in 

a number of aspects. Indeed, one can distinguish several issues of practical importance that raise 

considerable challenges in VRP-related research (Giaglis et al., 2004). 

 

Vehicle Capacity: There exist formulations for both the Capacitated VRP and the Uncapacitated VRP 

depending on whether vehicle capacities are considered. The Capacitated VRP (CVRP), as presented for 

example in Toth and Vigo (2002a), is perhaps amongst the most widely researched variations of the problem. 

Capacity considerations are important in the case examined here, especially in view of reverse logistics, in 

which the capability of the vehicle to respond to the customer requirements depends strongly on its available 

capacity. 

 

Number of Stages: While the single-stage VRP (delivery only) is primarily concerned with the establishment 

of outbound delivery routes, the double-stage VRP considers both delivery & pickup, i.e. outbound and 

inbound distribution. For a treatment of the two-stage VRP see Savelsbergh (1995) and Yang et al. (2000). 

 

Deterministic vs Stochastic Supply/Demand: The Deterministic VRP assumes that demand/supply is known 

a priori, while the Stochastic VRP encompasses uncertainty in demand and/or supply levels (Min et al., 

1998). As discussed above, demand uncertainty is a key characteristic of Ex-van sales (see Section 2). 

 

Planning Horizon (single/multiple periods): The Single Period VRP takes into consideration a single 

planning period (for example, solving the distribution problem for next day’s deliveries), while the Multiple 

Period VRP considers optimal solutions in multiple periods and therefore seeks for a good solution over a 

longer planning horizon. In this case the initial schedule can be adjusted, according to the current needs for 

distribution (Laporte, 1988).   
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Time Windows: A classical variation of the VRP considers time windows, outside which deliveries cannot 

be accepted. Time windows can either be ‘hard’, when they cannot be violated, or ‘soft’, in which case 

violations are accepted but penalized. A recent analysis of the VRP with soft time windows has been 

provided by Ioannou et al.(2003).  

 

Objectives: There exist Single-Objective or Multiple-Objective formulations of the VRP. The most common 

VRP objective is to minimize the total cost of deliveries. However, additional objectives might be 

considered, such as minimizing number of depots or maximizing customer satisfaction (Renauld et al., 2000; 

Fisher, 1994).  

 

Type of Approach: The computational complexity of the VRP has prompted the development of heuristics 

since the 1970s (Christofides et al., 1969; Yellow, 1970; Wren and Holliday, 1972; Ashour et al., 1972; 

Gillett and Miller, 1974). The development of heuristics especially in practical VRP cases still comprises a 

significant research area (Laporte, 1992; Breedam, 1995; Hachicha et al., 2000; Laporte et al., 2000). Exact 

solutions have also been developed; however, they can only be applied to vehicle routing problems of limited 

complexity (Reimann, 2003). An example of an exact, branch-and-bound approach is presented by Fisher 

(1994), in which the solution approach uses the minimum k-tree approach. 

 

Table 2.2 (Giaglis et al, 2004) includes relevant VRP publications (the majority of which have been 

mentioned above) and indicates that, while specific cases of the VRP have been rather extensively addressed 

in the literature, others have not attracted similar attention. For example, a relatively limited number of 

publications have focused in topics, such as the double-stage delivery, stochastic demand/supply, time-

windows, and multiple objectives. At the same time, more than approximately two-thirds of the approaches 

employed use heuristics, while exact approaches can be found in about one-third of the cases.  

 

It is also worth pointing out that the problem of Ex-van sales, which incorporates several complexities, such 

as uncertain demand, multiple planning horizons, possible time windows, and others, has yet to be fully 

addressed in the literature, despite being an important practical case with significant potential for 

improvement. 
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Table 2.2. VRP Taxonomy 
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Ashour et al (1972)                               

Gillett and Miller (1974)                               

Dror and Ball (1987)                

Robuste et al (1990)                               

Vliet et al (1992)                               

Fisher (1994)                               

Koksalan et al (1995)                               

Savelsbergh (1995)                               

Bowers et al (1996)                               

Beasley and Crhistofides (1997)                               

Modesti and Sciomachen 
(1998)                               

Barbarosoglu and Ozgur (1999)                               

Van der Poort et al (1999)                               

Coy et al (1999)                               

Larsen (1999)                               

Secomandi (2000)                               

Renaud et al (2000)                               

Nanry and Barnes (2000)                               

Yang et al (2000)                               

Rego (2001)                               

Fagerholt (2001)                               

Glover et al (2001)                               

Toth and Vigo (2002a)                               

Tarantilis and Kiranoudis (2002)                               

Tarantilis et al (2003)                               

Ho and Haugland (2003)                               

Ioannou et al (2003)                               

Coverage 92% 8% 77% 23% 42% 58% 88% 12% 73% 12% 15% 92% 8% 31% 69% 
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2.4 The Ex-van Business Model 

 

Typically retail outlets (supermarkets, kiosks) monitor stock levels per item, and record seasonal 

consumption trends. Based on this information they compile a forecast, which, combined with actual stocks, 

is translated to purchase orders containing the quantity to be purchased per product. The lead-time of 

purchase order processing (internal), as well as the lead-time of the supplier to respond to the order and 

dispatch the goods (external), forms the total lead-time of such an order.  

 

There are typically two sources of variability that may limit the effectiveness of outlet supply: First, there is 

lead time variability which may be caused by unforeseen events and warehouse stock-outs. Secondly, there is 

demand variability, and inevitable deviations from the forecast. These types of variability may affect the 

ability of the outlet to satisfy the total daily customer demand for certain items. The Ex-van model attempts 

to respond to such variations in an effective manner targeting especially high-demand commodities. This is 

done by replenishing regularly the stock of certain types of commodities, so that the outlet (super market, 

kiosk, etc.) can maximise its sales. 

 

The typical Ex-van commodity types vary and depend on the type of outlet. For example, Ex-van 

commodities in a Super-Market present the following characteristics: 

 

• High daily customer demand 

• Short expiration dates 

• High storage requirements 

• Low value per unit item. 

 

Typical examples include fresh milk cartons, fresh yogurt, fresh fruit juice and fresh bread. Therefore, the 

retail outlet may order a specific quantity per item via standard delivery, but also have a scheduled Ex-van 

visit around mid-day. At the time of the visit the particular commodity stock levels will be examined, and if 

found below a predefined threshold per commodity (assigned in advance by the outlet Inventory Manager), 

additional product will be purchased from the Ex-van vehicle, therefore creating an Ex-van sales order. The 

size of the Ex-van sales order may vary, depending on daily sales as well as the sales skills of the Ex-van 
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driver / sales person. The typical Ex-van fleet size for commodities similar to the ones discussed above is 

between 5-10 vehicles. Each vehicle is assigned a set of customers to be visited on a daily basis. Due to the 

fact that each customer can define a time window within which Ex-van visits are allowed, the customer 

service sequence is typically predefined and has to be observed, otherwise sales opportunities may be lost.  

 

The mission of each Ex-van vehicle is to visit all assigned customer sites, and replenish the stock of selected 

products. The demand of each customer point is not known in advance but it is revealed upon arrival. 

Therefore, the total demand of a scheduled customer sequence typically exceeds the total capacity of the 

vehicle for a particular item, forcing the vehicle to return to the depot in order to replenish its own stock, 

before resuming its route.   

 

As mentioned above, the Ex-van driver is a mobile Sales person, who satisfies the customer (pull model), 

and attempts to sell as much as possible to the customer (push model). It is frequently the case, that the 

outlet’s actual demand may be less than the actual sales quantity, due to the sales-orientation of the Ex-van 

driver, an up-sell case. It is also common for the outlet to demand commodity A but to finally purchase both 

A and B, an example of a cross-sell case. The Ex-van driver strives to maximise sales per customer point, 

since there is typically a direct relation between the sales achieved and the commission / bonus of the 

‘driver’.  

 

In summary, the characteristics of the Ex-van Sales Model are: 

 

a) The distribution vehicle operates in a designated area 

b) The sequence of serving the customers within this area is typically predetermined, in line with the 

time-window constraints of these customers 

c) The vehicle usually carries multiple items 

d) The customer demand is not known in advance  

e) The vehicle may pickup returned packaging or expired products and carry them to the depot 

f) If the vehicle disperses its entire inventory (of one or more items) prior to completing the route, it 

returns to the depot for stock replenishment. 
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Other Related Settings 

 

In addition to the Ex-van environment, the above characteristics may also arise in other practical settings.  

For example, material handling systems in a manufacturing shop often operate along fixed pathways that 

connect the material warehouse with workcenters located along this pathway. Consider the case of 

Automated Guided Vehicle Systems (AGVs), which are self-propelled vehicles typically guided along a 

magnetic induction strip, or a painted strip on the shop floor, and transport discrete parts to workcenters, 

obviously in a predefined sequence.  Note that in addition to the main pathway connecting the workcenters, 

there are spurs connecting each workcenter with the material warehouse, allowing the return and reloading of 

the AGV. This case shares the same characteristics with the Ex-van sales case: The AGV serves a specific 

area on the shop-floor, has limited capacity, can carry multiple items, the visit sequence is predetermined, 

items may also be picked up from the workcenters, the demand of each workcenter may not be known in 

advance (especially for items to be picked up), and the AGV is allowed to return to the material warehouse 

for stock replenishment. It should also be mentioned that a similar situation exists in other types of material 

handling mechanisms, such as monorail or powered overhead conveyors, which carry parts on a hanger with 

limited capacity.  

 

2.5 Relevant VRP problems 

 

The types of vehicle routing problems that are most relevant to the setting described above and to the work 

of this dissertation are presented in Table 2.3 and discussed below. 

 

Table 2.3. Relevant VRP types. 

Problem Type Characteristic 

Capacitated VRP 
Each vehicle has a limited capacity 

Split Delivery VRP 
The customers are served by n vehicles 

VRP with Pickups and Deliveries 

The vehicle delivers products to customers and 

collects items from them 

Stochastic VRP 

Some of the problem parameters or variables are 

not known in advance 
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2.5.1 The Capacitated and Split Delivery Problems 

 

In the Capacitated VRP (CVRP), the demands are deterministic, known in advance, the delivery vehicles are 

identical (of equal capacity) and are based at a single central depot, and the objective is to minimize the total 

cost (i.e., the total distance or travel time) needed to serve all customers. Generally, the travel cost between 

each pair of customers is the same in both directions, i.e., the resulting cost matrix is symmetric. In some 

applications, such as distribution in urban areas with one-way streets, the cost matrix may not be symmetric. 

The CVRP has been extensively studied since the early sixties and, as a result, many heuristic and exact 

approaches have been proposed (Laporte and Louveaux, 1990; Augerat et al. 1998; Toth and Vigo, 2002; 

Tarantilis et al, 2005; Longo et al. 2006, Alba and Dorronsoro, 2006).  

 

The Split Delivery VRP (SDVRP) is a relaxation of the VRP according to which the same customer is 

allowed to be served by different vehicles, if this reduces overall costs. This relaxation is very important if 

the size of the customer orders is in the order of the capacity of a vehicle. Dror & Trudeau (1990) have 

proposed a heuristic algorithm for the SDVRP and have shown that allowing split deliveries can yield 

substantial savings, both in the total distance traveled and in the number of vehicles used in the optimal 

solution. In addition, the SDVRP has been formulated as an integer linear program and its solution has been 

approached by constraint relaxation branch and bound algorithms (Dror et al. 1994; Ho & Haugland, 2004; 

Bompadre et al, 2006). 

 

2.5.2 The VRP with Pickups and Deliveries 

 

In the Vehicle Routing Problem with Pickups and Deliveries (VRPPD), the customers may also return some 

items during the vehicle’s visit (e.g. empty packaging, returned product to be delivered to the depot, items to 

be delivered to another customer).   In the basic version of the VRPPD, each customer i is associated with 

two quantities di and pi representing the demand of commodities (measured by the same unit of measure) to 

be delivered and picked up at customer i, respectively. For each customer i, Oi denotes the vertex that is the 

origin vertex of the delivery demand, and Di denotes the destination vertex of the pickup demand. It is 

assumed that at each customer location the delivery is performed before the pickup; therefore the current 

load of a vehicle arriving at a given location is defined by the initial load minus all products already 



University of the Aegean                              Department of Financial and Management Engineering 

       16 

delivered plus all products already picked up. The VRPPD consists of finding a collection of exactly K 

simple circuits with minimum cost, such that: 

 

� Each circuit visits the depot vertex; 

� The current load of the vehicle along the circuit must be nonnegative and may never exceed the vehicle 

capacity Q; 

� For each customer i, the origin Oi, when different for the depot, must be served in the same circuit and 

before customer i; and 

� For each customer i, the destination Di, when different from the depot, must be served in the same circuit 

and after customer i. 

 

It is, therefore, obvious that in the VRPPD it is necessary to plan for maintaining enough empty space on the 

vehicle in order to accommodate the returned goods or items (in cases in which deliveries and pick ups are of 

the same order). This restriction makes the planning problem harder and can lead to sub-optimal utilization 

of vehicle capacities, increased travel distances or a need for additional vehicles. The VRPPD is NP-hard in 

the strong sense, since it generalizes the Capacitated VRP (CVRP). The latter is obtained when Oi = Di and 

pi = 0 for each i ∈ V.  

 

Variants of the VRPPD include the so-called TSP with Pickup and Delivery (TSPPD), in which K = 1. In a 

significant common variant, all delivery demands start from the depot and all pickup demands are brought 

back to the depot, and, thus, there are no interchanges of goods between customers. Other problem variants 

include; a) relaxing the restriction that all customers have to be visited exactly once, or b) each vehicle must 

deliver all the commodities before picking up any items.  

 

The solution of the VRPPD has recently been approached by promising metaheuristics which include tabu-

search using arc-exchange-based and node-exchange-based neighborhoods, and employing different and 

interacting tabu lists (Righini, 2000; Nagy & Salhi, 2005; Alfredo et al., 2006; Pisinger and Ropke, 2007). 
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2.5.3 The Stochastic VRP 

 

The Stochastic Vehicle Routing Problem (SVRP) refers to a family of problems, that combine the 

characteristics of stochastic and integer programs, and are often regarded as computationally intractable 

(Gendreau et al, 1996). Therefore, only relatively small instances can be solved to optimality and effective 

heuristics are hard to design and assess. The most common stochastic VRPs are the Vehicle Routing Problem 

with Stochastic Demands (Dror et al., 1989; Laporte, 1989), the VRP with Stochastic Customers (Bertsimas, 

1988; Waters, 1989), and the VRP with Stochastic Customers and Demands (Jezequel, 1985; Jaillet, 1987; 

Jaillet and Odoni, 1988).  

 

 

The VRP with Stochastic Demands (VRPSD) 
 

 

In this problem, the demands are usually independent random variables that may (or may not) follow a 

known distribution based on historical demand. This problem often arises in practice. A typical example is 

garbage collection, in which it is impossible to know a priori the quantity to be collected at each collection. 

Another example, is the delivery of petrol to petrol stations. In this case, when a customer issues an order it 

is unknown how much petrol will be sold in the time elapsed between the order and the delivery.   

 

In order to address the inherent uncertainty in this type of VRP, a recourse action (i.e. return to the depot in 

order to refill) is usually embedded into the formulation of the problem, and penalties are incurred in the case 

of a route failure (Stewart and Golden, 1983). Due to the stochastic nature of this problem, the objective 

function is the expected value of the total route cost; the goal is to approach the optimal value, which can be 

derived from the deterministic counterpart of the particular problem (Bertsimas, 1992; Trudeau & Dror, 

1992; Dror, 1993; Birattari et al. 2005). Bertsimas (1992) constructs an a priori sequence among all 

customers of minimal expected total length and proposes heuristics for the solution of the problem. His 

approach proved to be a strong and useful alternative to the strategy of re-optimization in capacitated routing 

problems. More recently, Birattari et al. (2005), proposed five metaheuristics (simulated annealing, tabu 

search, local search, ant colony optimisation, and evolutionary algorithms) and tested the effect of 

hybridization (TSP-approximation and  VRPSD-approximation).  
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Secomandi (2000, 2001) has fairly recently applied Neuro Dynamic Programming techniques to the VRPSD. 

He addressed the VRPSD with a re-optimization approach, in which after each customer demand is revealed 

the remaining part of the problem is re-solved. This approach may yield better solutions than the preventive 

restocking strategy (returning to the depot before a stock out actually occurs), but it is much more 

computationally expensive. Moreover, the initially planned route may be altered completely, and this 

situation may present a limitation in practice.  

 

Yang et al. (2000) investigate the single and multi-vehicle VRPSD. Instead of adopting a simple recourse 

action usually suggested in the literature, an optimal restocking policy of the vehicle has been incorporated in 

the route design. In particular, the restocking points are deliberately planned along the route, such that the 

probability of the route failure, and the accompanying recourse cost (including any penalty) is reduced, and 

the expected total cost of the routes is minimized. Two heuristic algorithms are developed to construct both 

single and multiple routes that minimize total travel cost. The algorithms (route-first-cluster-next, and 

cluster-first-route-next) solve separately a) the problem of clustering customers to be served by different 

vehicles, and b) the problem of finding the best route within each cluster. Both algorithms seem to be 

efficient and robust for small size instances, as shown by comparing the results to those obtained from 

branch-and-bound solutions for instances with up to 15 customers. It has been shown that, for the 

unconstrained case, a single route design gives the best solution. However, for many practical situations, a 

large route is impractical, due to various practical restrictions. 

 

The VRP with Stochastic Customers (VRPSC) 

 

In this problem the customers are present in the route with some probability but they have deterministic 

demands. The vehicle’s total capacity must be respected and returns to the depot may become necessary, if 

the total route demand exceeds the vehicle capacity. According to Gendreau et al. (1996), two interesting 

properties stand out and apply both to the VRPSD and the VRPSC. First, even if travel costs are 

symmetrical, the overall solution cost depends on the direction of travel (Dror and Trudeau, 1986; Jaillet and 

Odoni, 1988). Dror and Trudeau (1986) present two stochastic programming models: Chance-constrained 

programming models and dependent-chance programming models. A genetic algorithm is designed for 

solving the proposed stochastic programming models, and the effectiveness of this algorithm is illustrated by 

solving numerical examples.  
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The VRP with both Stochastic Customers and Demands (VRPSCD) 

 

In this problem the customers are present in the route with some probability and their demands are also 

independent random variables. The VRPSCD is an exceedingly difficult problem. Even computing the value 

of the objective function is complex. Bertsimas (1992) provides a recursive expression for the VRPSCD, as 

well as bounds, asymptotic results and an analysis of several re-optimization policies. Motivated by 

applications in strategic planning and distribution systems, rather than resolving the problem when the 

demand becomes known, Bertsimas proposes to construct an a priori sequence among all customers of 

minimal expected total length, and proposes heuristics for the solution of the problem (under general 

probabilistic assumptions). His approach proves to be a strong and useful alternative to the strategy of re-

optimization in capacitated routing problems.  

 

2.6 The Vehicle Routing with Depot Returns Problem 

 

The problem that models the case(s) discussed in Section 2.4 will be termed the Vehicle Routing with Depot 

Returns Problem (VRDRP). In this problem, a single vehicle starts from its depot and serves customers in a 

predefined sequence. The demand of each customer is either known in advance (deterministic) or not 

(stochastic). The distances (travel times or costs), among all points of the network (depot and customer 

points) are fixed and known. The quantity to be loaded to the vehicle cannot exceed its capacity. Upon 

completion of service at each customer site, the vehicle has to either (a) travel to the next customer, or (b) 

return to the depot in order to reload (and/or unload), and resume its route. Note that even though the stock 

on board the vehicle may be adequate to serve the next client, a preemptive return to replenish the vehicle’s 

stock may be beneficial in order to avoid future returns from a customer site that is further away from the 

depot. The objective is to serve all customers and minimize travel distance (cost).  

 

The predefined customer visit sequence is a significant restriction, which, nevertheless is encountered in 

many practical cases (due to hard customer time windows, traffic avoidance practices, etc.). One may define 

several cases of this problem of increasing complexity. These cases are discussed below, along with the 

available literature. 
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The deterministic VRDRP  

 

According to this problem, the demand of each customer is known in advance (deterministic) and the 

challenge is to identify the minimum cost route, which may include depot returns for vehicle stock 

replenishment. This problem is addressed in Chapter 3 of this dissertation The VRDRP has distinct 

differences when compared to the classic Vehicle Routing Problem (VRP): 

 

1. The customer visit sequence in the VRDRP is pre-determined.  

2. In the VRDRP the vehicle may visit the depot multiple times. In fact, it may be advantageous to return to 

the depot, even if the stock on board is adequate to satisfy the demand of the next customer(s), if such a 

preemptive return minimizes the total route distance. 

3. The VRP yields a solution in which the number of routes (tours) is equal (or less in some extreme cases) 

to the number of vehicles. The VRDRP yields solutions with a number of tours less or equal to the 

number of customers. 

 

VRDRP with Multiple Products 

 

In this case multiple products are delivered to the customers. The demand of each customer for each product 

is known in advance (deterministic). The challenge is again to identify the minimum cost route including the 

necessary depot returns for vehicle stock replenishment. This case consists of two distinct sub-cases, a) the 

sub-case in which each product is stored in its own compartment the capacity of which is fixed, and b) the 

sub-case in which all products are stored together in the vehicle’s single compartment.  

 

Note that, in this last (unified) load sub-case there are additional issues to be considered; for example, an 

additional decision needs to be made regarding the quantities of stock to be loaded onto the vehicle. This 

problem is addressed in Chapter 4 of this dissertation. 

 

VRDRP with Pickups and Deliveries 

 

In this case the demand of each customer is known in advance (deterministic) but it involves both delivery as 

well as pickup of goods. Thus, an additional decision should be made concerning the quantity to be loaded to 
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the vehicle each time the vehicle returns to the depot. This is because unnecessarily high stock levels may 

prevent the collection of returned items, therefore causing additional depot returns and lower customer 

service. The challenge is again to identify the minimum cost route. This problem has been presented and 

addressed in Tsiribas et al. (2007).  

 

The Stochastic VRDRP 

 

In this case, a single product is distributed, but the demand of each customer is not known in advance. The 

objective is again to identify the minimum expected cost including the necessary depot returns for vehicle 

stock replenishment. This problem was initially treated in Yang et al. (2000). In this paper, the authors 

propose two heuristic algorithms to construct both single and multiple routes that minimize total travel cost. 

These methods were found to be, in general, superior to those of which adapt a deterministic method. The 

two significant results of Yang et al that relate to our work are: a) The dynamic programming formulation to 

determine the minimum expected cost, which has been extended in this work to address more complex and 

intersting scenarios, and b) the theory of deriving optimal policy of service. 

 

The stochastic VRDRP was more recently presented by Manfrin et al. (2004), who approached it as a 

simplified version (1 instead of n vehicles) of the generalized Stochastic Vehicle Routing Problem (SVRP).  

In their paper, Manfrin et al. explore the hybridization of the metaheuristic search process by interleaving the 

objective function with the one from a closely related problem (the traveling salesman problem - TSP) which 

can be computed in much less computation time. Moreover, Manfrin et al. analyze several extensions to the 

proposed metaheuristics, and report experimental results with respect to different types of instances. It is 

shown that for the instances tested, most metaheuristics perform better when hybridized with the traveling 

salesman objective function. Lately, Kyriakidis and Dimitrakos (2007), presented the SVRDRP with 

continuous demands, and suggested a dynamic programming algorithm to determine the optimal policy.A 

detailed treatment of the Stochastic Vehicle Routing with Depot Returns Problem (SVRDRP) is included in 

Chapter 5 of this dissertation.  
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The SVRDRP with Multiple Products 

 

This is the stochastic version of the VRDRP with Multiple Products. The challenge is again to identify the 

minimum expected cost including the necessary depot returns for vehicle stock replenishment. This case 

includes, again, two distinct sub-cases, as described for the deterministic case. Both sub-cases are modeled 

and addressed in Chapter 6. 

 

The Stochastic Ex-van with Pickup and Delivery 

 

In this case, neither the demand for the product to be delivered nor for the item to be picked up is known in 

advance. This is the stochastic version of the VRDRP with Pickup and Delivery. Again, as in the 

deterministic case, an additional decision should be made concerning the quantity to be loaded to the vehicle 

each time the vehicle returns to the depot. This is because unnecessarily high stock levels may prevent the 

collection of returned items, therefore causing additional depot returns and lower customer service. This 

problem is modeled and solved in Chapter 7. 

 

2.7 Contributions of this Dissertation 

 

As described in the previous Section, this dissertation treats a vehicle routing problem of significant practical 

value. Several cases of this problem of increasing complexity are modeled and solved. Most of these cases 

are posed, analyzed, and solved to optimality for the first time in the literature. Our contributions can be 

summarized as follows: 

 

1. For the VRDRP we develop a dynamic programming algorithm (DPA) inspired by the work of Yang et 

al. (2000) and solve the problem to optimality in efficient computational times. Problem instances 

containing up to 50 customers were solved. 

 

2. For the two cases of the VRDRP with Multiple Products we develop the mathematical models, as well as 

new efficient algorithms that solve these problems to optimality. Again, problem instances containing up 

to 50 customers were solved. 
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3. For the SVRDRP, which has been initially presented and solved by Yang et al. (2000), we present an 

analysis of the problem to determine: a) the effect of the variance of the demand on the minimum 

expected cost function, and b) the interaction between the mean and the variance of the demand. 

 

4. For the SVRDRP with Multiple Products we pose both cases, the compartmentalized and the unified 

load. We analyze the characteristics of each, and we develop novel methods to determine the minimum 

expected cost. We also develop the theoretical results that permit one to determine the optimal decision 

after serving each customer.  

 

5. Finally, for the SVRDRP with Pickups and Deliveries we define the problem, present its characteristics, 

and develop a novel method to determine the minimum expected cost as well as the optimal decision 

after serving each customer. 

 

The problems in 2, 4 and 5 above, are presented and solved in this dissertation for the first time in the 

literature.  
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Chapter 3 
The Vehicle Routing with Depot Returns Problem (VRDRP) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Introduction 

 

In this Chapter we present the basic form of the Vehicle Routing with Depot Returns Problem (VRDRP). In 

this problem the demand of each customer is known in advance (deterministic). The problem characteristics, 

the mathematical model and an efficient solution method initially proposed by Yang et al. (2000) are 

presented. The Chapter concludes with comments on the performance of the solution method. 
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3.2 The VRDRP 

 

As already presented in Chapter 2, the VRDRP is a special case of the VRP in which there is only one 

vehicle that serves its customers in a predefined sequence delivering a single product. The demand of each 

customer is known in advance (deterministic). All distances (travel times) in the network are also known. 

The product quantity that can be loaded to the vehicle may not exceed the vehicle’s capacity. The vehicle 

serves the customer fully during a single visit; i.e. it visits the customer only if the quantity on board is 

greater or equal to the customer’s demand. The vehicle is allowed to return to the depot in order to refill. It is 

assumed that service at a customer site as well as reloading at the depot, happen instantly.  

 

Upon completion of service at each customer site, the vehicle has to either (a) proceed to the next customer, 

as long as the demand of the next customer is not greater than the remaining stock on board, or (b) return to 

the depot in order to reload, and resume its route by visiting the next customer in the sequence. This decision 

point is shown in Figure 3.1, in which the vehicle has just served customer-3 and a decision has to be made: 

in case (a) the vehicle will proceed directly to customer-4; in case (b) it will first return to the depot to refill, 

and will then proceed to customer-4. Note that even though the stock on board the vehicle may be adequate 

to serve the next client, a preemptive return to replenish the vehicle’s stock may be beneficial in order to 

avoid future returns from a customer site that is further away from the depot.  

 

 

 

 

 

 

 

 

 

 

Figure 3.1. The decision the vehicle has to take at each customer point. 

 

Depot 

Customer 
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(b) 
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Consider a set of nodes }, , ,0{ nV K=  with node 0 denoting the depot and nodes n , ,1K  corresponding to 

customers, and a set of arcs }}{:)1,0(),0,1( ),1,{( nViiiiiA −∈+++=  that join the customers along the route 

,21 n→→→ L  as well as all customers with the depot. The travel cost (distance) of each arc ),( ji  is 

denoted by 0>ijc , and the ijc  values satisfy the triangular inequality. We assume that a single vehicle must 

serve all customers according to the predefined sequence n , ,1K  and that a customer should not be served 

twice. The vehicle is at the depot initially and after serving all customers it returns to the depot. It is assumed 

that the maximum capacity of the vehicle is equal to Q products. The stock on board the vehicle after serving 

customer i-1 is the same with the stock upon arrival at customer i (and before serving customer i) and equal 

to zi-1.  

 

Decision Variables:  xi,i+1 ∈  {0,1}  ∀      i = 1, 2, …, n-1 

    xi,0     ∈ {0,1}  ∀      i = 1, 2, …, n-1 

    x0,i     ∈ {0,1}  ∀      i = 2, …, n 

 

Objective Function 

Min E = 1,

1

0

1, +

−

=
+∑ ii

n

i

ii xc  + 
0

1

1

0 i

n

i

i xc∑
−

=

+ 
i

n

i

i xc 0

2

0∑
=

    (3.1) 

Constraints 

 

x01 = 1             (3.2) 

xn0 = 1             (3.3) 

xi-1,i + x0i = 1     ∀      i = 2, …, n     (3.4) 

xi,i+1 + xi0 = 1     ∀    i = 1, 2, …, n-1    (3.5) 

zi-1 = x0i Q + (1 – x0i) (zi-2 – di-1)  ∀      i = 2, …, n     (3.6) 

z1 = Q             (3.7) 

di ≤  zi-1 ≤  Q     ∀      i = 1, …, n     (3.8) 

 

 

Constraints (3.2) and (3.3) indicate that the vehicle must leave the depot at the start of the route and must 

return to the depot after the completion of the route.  
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Constraints (3.4) and (3.5) are also network constraints and relate to the customer nodes. According to Eq. 

(3.4) the vehicle will either arrive to the next customer from the previous customer or from the depot, and 

according to Eq. (3.5) the vehicle will depart from a customer point either to go to the next customer or to go 

to the depot. 

 

Constraints (3.6) to (3.8) are capacity constraints. According to Eq. (3.6) the stock left on board prior to 

visiting customer i will be either equal to the full vehicle capacity Q, if the vehicle is coming from the depot, 

or equal to what is left on board after serving customer i-1. According to Eq. (3.7) the stock of the vehicle 

upon arrival at the first customer is equal to its full capacity Q. Finally, according to Eq. (3.8) the stock left 

on board after service completion of a customer, should always be kept between the values of the next 

customer’s demand and the vehicle full capacity. If the value of the stock on board drops below the value of 

the next customer’s demand, a return to the depot for refill is necessary.  

 

3.3 Problem Characteristics 

 

Any feasible route of the vehicle can be denoted by a vector of n elements; each element assumes the values 

‘0’ or ‘1’ : ui = 0 represents the case in which after serving customer i, the vehicle will serve customer i+1 

without visiting the depot; ui = 1 represents the case in which after serving customer i, the vehicle visits the 

depot, replenishes its stock, and proceeds to customer i+1.  

 

As an example, the vector [0 0 0 1 0 0 0 1] refers to a customer network that consists of eight customer 

points. After serving customer 4 the vehicle returns to the depot for stock replenishment. Obviously, after 

serving customer 8 the vehicle returns to the depot in order to conclude its route. 

 

 

3.3.1 Problem Complexity 

If the number of customers in the network is equal to n, then there are 2
n-1
 possible ‘0-1’ combinations 

representing a route, since un = 1. In order to identify the subset of feasible combinations, the demand-

capacity restrictions are applied; that is, the demand of all customers included between two subsequent visits 

to the depot cannot exceed the total vehicle capacity.  
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To further analyze the complexity of the problem, we developed an Exhaustive Search algorithm that 

searched the entire solution space exhaustively, identified the feasible combinations, calculated the value of 

the objective function for each feasible combination, and identified the optimal solution(s). The steps of the 

Exhaustive Search algorithm are given below: 

 

1. Load the customer matrix C 

2. Initialize the total distance traveled as Min = ∞  

3. Do while all possible combinations have not been exhausted: 

a. Create the first/next combination as [1 0 0 …0] 

b. Examine feasibility of this combination and if feasible 

i. Calculate total distance traveled (Dist) 

ii. If Dist < Min then Min = Dist 

iii. If Dist > Min then Min = Min 

c. If the combination is not feasible go to step (a) 

4. End 

 

A ‘feasible combination’ is one that the sum of the customer demands among two consecutive depot visits 

does not exceed the capacity of the vehicle. C is an n*m matrix, where n = number of customers, m = 4. 

Column one contains information regarding the number of customers in the sequence. Column two contains 

information on the distance of customer i from the depot. Column three contains information on the distance 

of customer i from customer i+1. Column four contains information on the demand of customer i. 

 

The exhaustive search algorithm was written in Matlab Version 7.0 and ran on a PC Intel Pentium IV, 1.6 

GHz CPU, 1Gb RAM pc. The algorithm was tested on instances with 5 to 20 customers and the results in 

computational time are shown in Figure 3.2.  
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Figure 3.2. Computational time of VRDRP vs. Customer number. 

 

From this figure it can be clearly seen that the computational time, and, therefore, the problem complexity, 

increases exponentially with the number of customers, as expected. Furthermore, beyond 20 customers the 

exhaustive search procedure is not practical. 

 

 

3.3.2 Number of depot returns 

An interesting characteristic of the problem is the number of times the vehicle will return to the depot to 

reload, in the optimal solution. The minimum number of depot returns is determined by finding the number 

of the absolute necessary returns without considering the distance traveled by the vehicle; i.e. the vehicle 

returns to the depot only when the stock on board is not sufficient to serve the next customer. This lower 

limit is defined as gmin and depends strictly on the customer demand vector (d1, d2, …, dn) and the vehicle 

capacity Q.  

 

Let’s now define gbest as the number of depot returns included in the best route of the vehicle. Obviously gmin 

≤ gbest. We investigated the relationship between gbest and gmin by creating 10,000 random problems and 

solving them to optimality, as follows: 
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1. Initiate the iterative procedure for 10,000 problems 

2. For each problem create a random customer matrix i.e. random distances among customer points and 

depot, and random customer demands 

3. Determine gmin by deriving the solution that is strictly based on vehicle capacity restrictions; that is the 

sum of customer demands between two consecutive depot visits must not exceed the vehicle capacity 

5. Initialize the total distance traveled as Min = ∞  

4. Do while 1 ≤ i ≤ n - gmin 

a. Do while all possible combinations have not been exhausted: 

i. Create the first/next combination which contains gmin+i (i = 0,1,2,…n) returns to the depot 

(including the final return) as [1 0 0 …1] 

ii. Examine feasibility of this combination and if feasible 

1. Calculate total distance traveled (Dist) 

2. If Dist < Min then Min = Dist 

3. If Dist > Min then Min = Min 

iii. If the combination is not feasible go to step (i) 

b. End Do while 

c. i = i +1 

6. End Do while 

7. Compare the best solutions identified for all gmin+i and identify the solution with the shortest distance 

8. Record the shortest distance along with the number of depot returns of step 7 

9. Repeat steps 2-7 for the next iteration 

10. Conclude after 10,000 iterations have been completed.  

 

The results of this experiment are shown in Figure 3.3.  

 



University of the Aegean                              Department of Financial and Management Engineering 

       31 

41,45%

38,49%

14,96%

4,12%

0,84% 0,14%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

gmin gmin+1 gmin+2 gmin+3 gmin+4 gmin+5

Number of depot returns for best solution

N
u
m
b
e
r 
o
f 
ti
m
e
s
 g

b
e
s
t 
=
 g

m
in
 +
 i

 

 

Figure 3.3. The results of the 10,000 experiments with 10 customers 

 

According to these results it appears that the best solution so far contains gmin to gmin+2 depot returns 95 

times out of 100 (95%). Therefore, in an enumerative algorithm that calculates all feasible solutions with 

gmin, gmin+1, and gmin+2 returns, the optimal solution would be determined with an approximately 95% 

confidence level. 

 

3.4 An Efficient Solution: The Dynamic Programming Algorithm (DPA) 

 

The VRDRP is solved to optimality using a dynamic programming algorithm. This is inspired by the work of 

Yang et al. (2000) and Manfrin et al. (2004), who presented the dynamic programming formulation for the 

Stochastic Vehicle Routing with Depot Returns Problem (VRDRP), where the demands of the customers are 

independent discrete random variables with known distributions.  

 

Consider the example customer network presented in Figure 3.4. 
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Figure 3.4. Small customer network. 

 

Let Vk(z), k = n, n-1… 1 and z = 0… Q-dk, be the minimum distance from customer k, from which the 

vehicle departs with stock left on board equal to z, to the end of the route.  

 

For k= n: 

Vn(z) = xn,0     and    z = 0, 1… Q-dn (3.9) 

 

For k= n-1: 

Vn-1(z)  =  xn-1,n + Vn(z)        if z ≥  dn  (3.10) 

 =  xn-1,0 + x0,n + Vn(z)        if z < dn  (3.11) 

 

For k= n-2…1: 

Vk(z)  =   xk,0 + x0,k+1 + Vk+1(Q-dk+1)      if z < dk+1  (3.12) 

 =   min { xk,0 + x0,k+1 + Vk+1(Q-dk+1), xk,k+1 + Vk+1(z-dk+1)}   if z ≥  dk+1  (3.13) 

 

Note that if z < dk+1 the only feasible action is to return to the depot in order to refill and then go to customer 

k+1. If z ≥  dk+1 then there are two possible actions. If: 

 

xk,k+1 + Vk+1(z-dk+1) ≤ xk,0 + x0,k+1 + Vk+1(Q-dk+1)  
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then the optimal decision is to go directly to customer  k+1. If the reverse inequality holds, then the optimal 

decision is to return to the depot and then go to customer k+1. The total cost of the optimal route is equal to: 

 

V0(z) = x01 + V1(Q-d1)      for k=0    (3.14) 

 

The above dynamic programming algorithm determines the route with the minimum cost, following the 

reverse customer order. To do so, the minimum cost from each customer site to the end of the route is 

computed for all possible values of the vehicle load after the current customer has been served. Having 

completed these computations for all customers, the algorithm selects the arcs, which comprise the route 

with the overall minimum cost.  

 

For the relevant theory of dynamic programming and some applications (e. g. knapsack problems, production 

and inventory models), in which a similar methodology is followed we point to Chapters 1-4 of Smith’s 

(1991) book.  

 

The exact steps of the algorithm are described below: 

1 For a given customer matrix (distances and demands)  

2 Start from the last customer and calculate Vn(z) using Eq. (3.9) 

3 Continue with the previous customer to calculate all Vn-1(z) using Eq. (3.10) and Eq. (3.11) 

4 Continue for all remaining customers (for k= n-2…1) to calculate all Vk(z) using Eq. (3.12) and Eq. 

(3.13) 

5 Compute the total cost of the optimal route using Eq.(3.14).  

6 Determine the optimal route  

7 End 

 

The optimal route is determined by the values of the decision variables 
ix  that correspond to the values of 

Vi(q) used for the computation of the minimum total cost. The algorithm identifies this value for each 

customer site and records the decision made. This decision can either be to proceed to the next customer site 

directly, or via the depot.   
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Figure 3.6. The results of the DPA Algorithm. 

 

As it can be clearly observed in Figure 3.6, the performance of the Dynamic Programming Algorithm proved 

to be very efficient, as expected. For problem instances with up to 100 customers the algorithm obtained the 

results almost instantly. For 1000 customers the average calculation time is 0.3 seconds. The experiments 

were run on a PC equipped with Intel Pentium IV, at 2.4 GHz, and 512 MB of RAM. 

 

3.5 Conclusions 

 

In this chapter we presented the Vehicle Routing with Depot Returns Problem (VRDRP). The objective of 

the problem is to minimize cost (distance) while serving all customers in a predefined sequence with a single 

vehicle. The analysis of the problem showed that its complexity increases exponentially with the number of 

customers. Furthermore, the number of depot returns in the optimal solution gbest is most of the times 

between gmin ≤ gbest ≤ gmin+2 where gmin is the minimum feasible number of depot returns. Finally, a dynamic 

programming algorithm (DPA) inspired by the work of Yang et al. (2000) and Manfrin et al. (2004) was 

developed to solve the problem to optimality in efficient computational times. 
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Chapter 4 
Variations of the VRDRP 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1 Introduction 

 

In Chapter 3 we saw that the optimal routing of a single vehicle, with limited capacity that delivers one 

product to n clients according to a predefined sequence, can be determined using dynamic programming. In 

this Chapter we propose and investigate two practical variations of this problem: (i) the case of multiple-

product deliveries in which each product is stored in its own compartment in the vehicle and (ii) the case of 

multiple-product deliveries in which all products are stored together in the vehicle’s single compartment. 

This work is the result of a joint effort with P.Tsiribas of the DeOPSys lab of the University of the Aegean. 

The problem formulations as well as the dynamic programming algorithms for the first variation were 

developed by the author of this dissertation. The algorithm for the second variation was the result of a joint 

effort with P.Tsiribas.  
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4.2 Variations of the VRDRP 

 

The general problem setting for both variations is identical to that of the VRDRP; i.e. a single vehicle serves 

clients in a predefined sequence. We define below the particulars of the two problems. 

 

Multiple-product Delivery - Compartmentalized load 

 

We assume that the vehicle is divided into K sections and each section is suitable for one type of product 

only (see Figure 4.1a); i.e, section j is suitable for product }. , ,1{ Kj K∈  A typical example of this situation 

is gasoline tankers. Let jQ  be the capacity of the vehicle for product j, for , , ,1 Kj K= . Clearly, 

∑ =
=

K

j j QQ
1

.   

 

 

Figure 4.1. The multiple product extension. 

 

Note that all product quantities are calculated using the same unit of measure e.g. 3m or kg. We declare jid  

the demand of customer } , ,1{ ni K∈  for product }. , ,1{ Kj K∈  It is assumed that this demand cannot exceed 

the respective capacity of the vehicle, i.e. ,jji Qd ≤  for all . , ,1 ni K=  The objective is to identify the nodes 

from which the vehicle will return to the depot for stock replenishment in order to minimize the total route 

cost. This problem will be addressed hereafter as Problem 1. 
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Multiple-product Delivery - Unified load  

 

It differs from Problem 1 only in that the vehicle may carry any quantity for each product }, , ,1{ Kj K∈  

provided that the total capacity Q of the vehicle is not exceeded (see Figure 4.1b). This problem will be 

addressed hereafter as Problem 2. 

 

4.3 The Solution algorithms 

 

It is possible to design suitable dynamic programming algorithms for the two problems defined in the 

previous section. For each problem the dynamic programming algorithm determines the route with the 

minimum cost, following the reverse customer order. To do so, the minimum cost from each customer site to 

the end of the route is computed, for all possible values of the vehicle load after the current customer has 

been served. Having completed these computations for all customers, the algorithm selects the arcs, which 

compile the route with the overall minimum cost. We develop these algorithms below separately for each 

problem. 

 

4.3.1 Algorithm for Problem 1 

 

Let , , ,1 ),,,( 1 nizzV Ki KK =  be the minimum total cost from customer i to the end of the route, if customer i 

has been served and the remaining quantity in the vehicle for product ,1 , Kjj ≤≤  is }. , ,0{ jijj dQz −∈ K  

These quantities can be computed by using the following equations (4.1)-(4.5): 

 

,),,( 01 nKn czzV =K                                                                (4.1) 

   ),,( 11,1 KnKnnnn dzdzVc −−+− K  if ,:} , ,1{ jnj dzKj ≥∈∀ K     (4.2) 

),,( 11 Kn zzV K−  = 

    ),,( 1100,1 KnKnnnn dQdQVcc −−++− K      if .:},,1{ jnj dzKj <∈∃ K    (4.3) 

 

For :1 , ,2 K−= ni  
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    ),,,( 1,1,1111,00 ++++ −−++ iKKiiii dQdQVcc K     if  ,:},,1{  1, +<∈∃ ijj dzKj K  (4.4) 

),,( 1 Ki zzV K =          

     ),,,(min{ 1,1,1111,00 ++++ −−++ iKKiiii dQdQVcc K  

                                 )},,,( 1,1,1111, ++++ −−+ iKKiiii dzdzVc K      if    .:},,1{ 1, +≥∈∀ ijj dzKj K   (4.5) 

 

Note that if there exists some } , ,1{ Kj K∈  such that 1, +< ijj dz , the only feasible action is to return to the 

depot in order to refill and then to go to customer .1+i  If 1, +≥ ijj dz  for all }, , ,1{ Kj K∈  then there are two 

possible actions. If 

 

), , ,() , ,( 1,1,1111,001,1,1111, ++++++++ −−++≤−−+ iKKiiiiiKKiiii dQdQVccdzdzVc KK  

 

then the optimal decision is to go directly to customer .1+i  If the reverse inequality holds, then the optimal 

decision is to return to the depot and then to go to customer .1+i  This case is possible, since due to the 

geometry of the route, a necessary return from a “remote” customer site may be avoided by returning to the 

depot from a customer site that is “close” to it and loading the vehicle up to its capacity. The total cost of the 

optimal route is equal to: 

 

). , ,( 1111101 KK dQdQVc −−+ K                                                                                (4.6) 

 

Let }1,0{),,( 1 ∈Ki zzx K  represent the decision of the vehicle in node }. , ,1{ ni K∈  Suppose that 

0),,( 1 =Ki zzx K  when the vehicle goes to customer 1+i  and 1),,( 1 =Ki zzx K  when it returns to the depot. 

It is clear that 

 

,1),,( 1 =Kn zzx K  

,1),,( 1 =Ki zzx K  if } , ,1{ Kj K∈∃  such that ,1, +< ijj dz  for { },1,...,1 −∈ ni  

{ },1,0),,( 1 ∈Ki zzx K  if { } ,:,...,1 1, +≥∈∀ ijj dzkj  for { }.1,...,1 −∈ ni  

 

The steps of the algorithm that determines the optimal policy for this problem are given below. 
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1. Compute and store ),,( 1 Kn zzV K  for all acceptable values of ),,( 1 Kzz K  for node n, using (4.1); 

store the corresponding value of ).,,( 1 Kn zzx K  

2. Compute and store ),,( 11 Kn zzV K−  for all acceptable values of ),,( 1 Kzz K  for node ,1−n  using (4.2) 

and (4.3); store the corresponding values of ).,,( 11 nn zzx K−  

3. Compute and store for 1 , ,2 K−= ni  the quantity ),,( 1 Ki zzV K  for all acceptable values of 

),,( 1 Kzz K  for node i, using (4.4) and (4.5); store the corresponding values of ).,,( 1 Ki zzx K  

4. Compute the total cost of the optimal route using (4.6). The optimal route is determined by the values 

of the decision variables ix  that correspond to the values of ),,( 1 Ki zzV K  used for the computation 

of the minimum total cost. 

 

Attention should be drawn to the fact that the algorithm described above is similar to the one presented in 

Section 3.4 of this dissertation.  

 

4.3.2 Algorithm for Problem 2 

 

This problem is transformed to the original VRDRP (i.e. Problem 1 with ),1=K by computing the total 

customer demand (note that all product quantities are calculated using the same units of measure e.g. 3m or 

kg). That way, it can be assumed that there is only one product type, and thus the problem is solved by 

implementing the algorithm for the original VRDRP problem. The proposed approach includes 3 steps: 

 

1. Transform the problem to the original VRDRP (Problem 1 with )1=K  The total demand 
id  for 

customer i  becomes  

 

∑
=

==
K

j

jii nidd
1

. , ,1  , K  

 

2. Solve the VRDRP using the dynamic programming algorithm that we described in Problem 1 with 

.1=K  
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3. Suppose that according to the optimal route the vehicle returns to the depot after visiting the 

customers mii  , ,1 K , where nm ≤  and .1 mii <<L  Then the quantity of product } , ,1{ Kj K∈  that the 

vehicle must load when it returns to the depot after serving customer } , ,1{ , mrir K∈  must be equal 

to ∑
+

+=

1

1

.
r

r

i

ii

jid  

 

In Step 3 we identify the stock quantity on board per product in the beginning of the route, as well as the 

quantity of refill per product, at each depot return. For each product, and for each sub-route (route between 

two subsequent depot returns) we add the demand of each customer site served in the particular sub-route. 

The sum of this total demand per product for the sub-route is equal to the optimal stock quantity that the 

vehicle should carry during this sub-route. The procedure is repeated for each sub-route until the entire route 

is exhausted and all product load quantities per sub-route are identified. 

 

4.4 Implementation and Computational Analysis 

 

In order to illustrate the proposed algorithms of Section 4.3, we present an example for each of these 

problems. In both examples the number of customers is equal to 5. Subsequently in both cases, a large 

number of problems are generated and solved in order to study the efficiency of the algorithms. The latter 

were implemented using Matlab v. 7.0 and ran using a personal computer equipped with an Intel Pentium IV, 

2.4 GHz processor and 512 MB of RAM. 

 

4.4.1 Illustrative Examples - Problem 1 

 

Consider the 5-customer network of Fig. 4.2. The vehicle capacity is 10=Q  units and is equally split 

between two products (Q1 = Q2 = 5); the demand for delivery ikd ,  for each product k (k = 1,2) and customer j 

(j = 1, …, 5), as well as the distances between the nodes cij are given in Fig. 4.2. 
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Figure 4.2. 5-customer network for the multiple-product (compartmentalized). 

 

The problem is solved using the dynamic programming algorithm presented in section 4.3.1. Let ),( 21 zzVi  

and ),( 21 zzxi  be the minimum total cost and the corresponding decision after customer }5 ,4 ,3 ,2 ,1{∈i  has 

been served. The remaining quantity in the vehicle is ),( 21 zz . Clearly, 1),( ,18),( 215215 == zzxzzV  for 

{ }.1,0&}3 , ,0{ 21 zz K∈  In Tables 4.1-4.4 we provide the results for nodes 1, 2, 3, 4. In these Tables, ),( 21 zz  

represents the quantity carried by the vehicle after customer i has been served; each cell includes two values: 

The first is the value of ),( 21 zzxi  and the second is the value of ),( 21 zzVi . 

 

Table 4.1. Results obtained for node 4 

                    z1               

z2 
0 1 2 3 4 

0 1; 40 1; 40 1; 40 1; 40 1; 40 

1 1; 40 1; 40 1; 40 1; 40 1; 40 

2 1; 40 1; 40 1; 40 1; 40 1; 40 

3 1; 40 1; 40 1; 40 1; 40 1; 40 

4 1; 40 1; 40 0; 34 0; 34 0; 34 
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Table 4.2. Results obtained for node 3 

            z1          

z2 
0 1 2 3 4 

0 1; 41 1; 41 1; 41 1; 41 1; 41 

1 1; 41 1; 41 1; 41 1; 41 1; 41 

 

 

Table 4.3. Results obtained for node 2 

            z1                                

z2 
0 1 2 3 4 

0 1; 50 1; 50 1; 50 1; 50 1; 50 

1 1; 50 1; 50 1; 50 1; 50 1; 50 

2 1; 50 1; 50 1; 50 1; 50 1; 50 

3 1; 50 1; 50 1; 50 1; 50 1; 50 

 

 

Table 4.4. Results obtained for node 1 

                    z1                              

z2 
4 

2 0; 67 

 

Therefore, the minimum total cost is equal to 816714 =+  and the optimal route is [ ]1,0,1,1,0  (Fig. 4.3). 
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Figure 4.3. Optimal route for the 5-customer multiple-product problem. 
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4.4.2 Illustrative Examples - Problem 2 

 

We consider the same example of Figure 4.2 for Problem 2. In this case however the vehicle is not 

compartmentalised. Following the steps of the algorithm of Section 4.3.2, first the problem is transformed to 

the original VRDRP presented in Section 3.2 (see Fig. 4.4). 
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Figure 4.4. Transformation of the 5-customer multiple-product route. 

 

According to Step 2 of the algorithm presented in Section 4.3.2, the basic problem is solved using the 

dynamic programming algorithm. Let )(zVi  and )(zxi  be the minimum total cost and the corresponding 

decision if customer }5 ,4 ,3 ,2 ,1{∈i  has been served and the remaining quantity in the vehicle is z. Clearly, 

1)( ,18)( 55 == zxzV  for }.14 , ,0{ K∈z  In Tables 4.5-4.8 we provide the results for nodes 1, 2, 3, 4. Again in 

these Tables, z  represents the quantity carried to by the vehicle after customer i has been served; each cell 

includes two values: The first is the value of )(zxi  and the second is the value of )(zVi
. 

 

Table 4.5. Results obtained for node 4 

 

 

 

 

Table 4.6. Results obtained for node 3 

 

 

z 0 1 2 3 4 5 6 7 8 

 1; 40 1; 40 1; 40 1; 40 1; 40 1; 40 0; 34 0; 34 0; 34 

z 0 1 2 3 4 5 

 1; 41 1; 41 1; 41 1; 41 1; 41 1; 41 
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Table 4.7. Results obtained for node 2 

 

 

 

 

Table 4.8. Results obtained for node 1 

 

 

 

The minimum total cost is equal to 786414 =+  and the optimal route is [ ]1,0,1,0,1  (see Fig. 4.5). 
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Figure 4.5. Optimal route for the 5-customer multiple-product problem. 

 

In Table 4.9 we give, according to Step 3 of the algorithm, the quantities of the products 1, 2 that the vehicle 

must load when it leaves the depot a) at the beginning of the route and b) after serving customers 1 and 3. 

Individually for each product, and for each sub-route (route between two subsequent depot returns) we add 

the demand of each customer site. The sum of this total demand per product for the particular sub-route is 

equal to the optimal stock quantity that the vehicle should carry during this sub-route. The procedure is 

repeated for each sub-route until the entire route is covered and all optimal product load quantities per sub-

route are identified. 

 

 

 

z 0 1 2 3 4 5 6 7 

 1; 50 1; 50 1; 50 1; 50 1; 50 0; 44 0; 44 0; 44 

z 6 

 0;  64 
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Table 4.9. Loads for the 5-customer multiple-product problem 

 

 

 

 

 

 

 

 

 

Notice that when the vehicle leaves the depot a) at the beginning of the route and b) after serving customers 

1 and 3, it is not loaded to its full capacity. This is due to the fact that according to the algorithm, the exact 

quantity of each product that the vehicle must carry for each sub-route is known. We therefore state that the 

algorithm can potentially create further cost savings, by preventing unnecessary loading / unloading of 

products at the depot. 

 

According to the solution results, the minimum distance for the compartmentalized case was equal to 81 and 

the optimal route is [ ]1,0,1,1,0  (Fig. 4.3). Respectively, the minimum distance for the unified load case was 

equal to 78 and the optimal route is [ ]1,0,1,0,1  (Fig. 4.5). Both routes include 2 returns to the depot for refill in 

order to be able to fully satisfy the total demand. But the route of the unified load case makes the first depot 

return after serving Customer point-1 instead of after Customer point-2, therefore achieving a cost saving. 

This was possible due to the product quantity loading flexibility that the unified load case provides. It 

therefore becomes clear that it would be more cost effective to operate a fleet of unified load vehicles, as 

long as this is possible (according to the product types, if they can be stored at the same compartment, if they 

can be mixed, etc.). 

 

4.5 Algorithm Performance Analysis 

 

In this section we analyze the performance of the algorithms developed to solve each of the problems. 

 

For the case of compartmentalized load (Problem 1) 3000 problems were created and solved. The number of 

customers in these problems ranged from 5 to 50, while the number of products was equal to 2, 3 and 4. The 

problems were formulated in the following manner: For each problem, a )3( Kn +×  matrix was created, 

 Product 1 Product 2 

Initial Load 1 3 

Load after Customer 1 2 6 

Load after Customer 4 3 5 
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where n denotes the number of customers (nodes) and K the number of product types. This matrix defines the 

network of the problem. Specifically, the first column relates to the customers, starting from customer 1 until 

customer n. The second column represents the distance of each customer from the depot, and the third the 

distances between customers according to the planned sequence of customer visits. The remaining columns 

represent the demand for each product type (K number of columns). The user provided the values of n and K, 

and the matrix values were generated randomly respecting the problem restrictions. 

  

For the case of unified load (Problem 2) we generated 2000 problems following the procedure described 

above. In this case the number of customers ranged from 5 to 1000, while the number of products ranged 

from 2 to 5. All problems were solved using the algorithms presented in Section 4.3 and the computational 

times for each case (Problem 1 and Problem 2) are shown in Figures 4.6 and 4.7, respectively. From these 

results it is apparent that the complexity of the case of compartmentalized load is significantly higher than 

that of the case of unified load and so are the computational times.  

 

Furthermore: 

� The computational time for Problem 1 increases with a rate less than exponential with respect to the 

number of customers, while for Problem 2 it increases linearly.  

� For Problem 1, the computational time increases exponentially with respect to the number of product 

types. This is due to the increase of the number of additional combinations to be examined for each 

additional product.  

 

Figure 4.6. Computational time for Problem 1. 
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Figure 4.7. Computational time for Problem 2. 

 

4.6 Conclusions 

 

In this Chapter we presented two practical variations of the VRDRP: (i) The case of multiple-product 

deliveries when each product is stored in its own compartment in the vehicle and (ii) the case of multiple-

product deliveries when all products are stored together in the vehicle’s single compartment. The 

mathematical models, as well as efficient algorithms that solve the problems to optimality were developed 

and presented. Since these algorithms are optimal, neither further validation (e.g. Vs. Exhaustive Search 

Algorithm) nor comparison with other heuristic/metaheuristic methods is required. Both problems were 

approached by appropriate extensions of the dynamic programming algorithm presented in Section 3.4 of 

this dissertation. Based on the experimental results of the multiple-product problem, it has been 

demonstrated that the complexity of the compartmentalized case is significantly higher from that of the 

unified load case. 
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Chapter 5 
The Stochastic Vehicle Routing with Depot Returns Problem (SVRDRP) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1 Introduction 

 

In this Chapter we present and analyze the stochastic version of the Vehicle Routing with Depot Returns 

Problem (SVRDRP). In this problem the customer demands are independent random variables with known 

distributions. The SVRDRP has been initially presented and solved by Yang et al. (2000). The purpose of the 

chapter is to analyze the problem with respect to critical parameters that characterize the randomness of the 

demand. This lays the foundation for the cases presented in the following chapters.  
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5.2 The Stochastic Vehicle Routing with Depot Returns Problem (SVRDRP) 

 

In the SVRDRP, the vehicle has been tasked to start from the depot, serve the customers at a predefined 

sequence and return to the depot. The demand of each customer is not known in advance, and it is revealed 

when the vehicle arrives at the customer site. Note that this situation is quite realistic. For example in the Ex-

van case, the driver also acts as a sales person, negotiating with the customer the order quantities; thus these 

quantities can not be assumed to be known a priori. The customer demands are modeled by independent 

random variables with known statistics (derived from historical data). The distances, (or travel times), among 

all points in the network (depot and customer sites) are known. The product quantity loaded onto the vehicle 

is up to its capacity, which cannot be exceeded. The vehicle returns to the depot in order to refill as needed. 

It is assumed that service at a customer site (as long as there is enough stock to satisfy the demand in full), as 

well as refill at the depot occur instantly upon arrival of the vehicle at each location.  

 

Upon completion of service at each customer, the driver has to make a decision: (a) Proceed to the next 

customer, as long as the probability of being able to fully satisfy the demand of the next customer is 

acceptable and the return distance is favourable; (b) return to the depot in order to refill, and resume the route 

by visiting the next customer in the predefined sequence. If the vehicle proceeds to the next customer but the 

actual demand of this customer turns out to be higher than the stock carried on board, the vehicle will unload 

its entire load, return to the depot to refill, and return to the customer to fully satisfy its demand (see Figure 

5.1). 

 

According to the example of Fig. 5.1, after serving customer 3 the vehicle’s driver is faced with a decision: 

Either proceed directly to customer 4 following route (a), or via the depot following route (b). In case (a), if 

the actual demand of customer 4 turns out to be higher that the stock in the vehicle, then the customer’s 

demand will be partially satisfied and a recourse action will be taken shown as route (c); i.e. the vehicle will 

return to the depot to refill, and proceed back to customer 4 to satisfy the remainder of this customer’s 

demand.   
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Figure 5.1. The decision by the vehicle’s driver at each customer site.  

 

To formalize the model of the SVRDRP, consider a set of nodes }, , ,0{ nV K=  with node 0 denoting the 

depot and nodes n , ,1 K  corresponding to customers, and a set of arcs 

}}{:)1,0(),0,( ),1,{( nVjjjjjA −∈++=  that join the customers along the route ,21 n→→→ L  as well as 

all customers with the depot. The travel cost (distance) of each arc ),( ji  is denoted by .0>ijc  The ijc values 

satisfy the triangular inequality. The network constraints of Eqs. (3.2) – (3.3) of Chapter 3 also hold here. It 

is assumed that the maximum capacity of the vehicle is equal to Q and the stock on board the vehicle upon 

service completion at customer j is equal to z. The random demand at customer j is given by ξj, where P(ξj = 

ξ
k
) is known for every customer j and every integer k ≥ 0.  Also ξj ≥ 0. Taking into consideration that the 

Vehicle Routing with Depot Returns Problem (VRDRP) is NP-hard, its Stochastic version (SVRDRP) is also 

NP-hard and significantly more complex (Kall, 1992). 

 

According to Yang et al. (2000), in order to identify an optimal route for a single vehicle, it is first necessary 

to develop an efficient procedure to evaluate a particular route, that is, to find its expected cost under an 

optimal restocking policy. Upon service completion at customer j, let the vehicle carry a remaining load z, 

and let fj(z) denote the minimum expected value of the cost from customer j onward. If Sj represents the set 

of all possible loads that a vehicle can carry after service completion at customer j, then, fj(z) for z ∈ Sj 

satisfies the following dynamic programming recursion (Yang et al. (2000)): 
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with the boundary condition:  

     fn(z) = cn0   z ∈ Sn     (5.2) 

 

In Eq. (5.1) part (a) in the minimization represents the expected cost of going directly to the next customer. If 

ξ
k
 ≤ z the vehicle can fully satisfy the demand – this is represented by the first term of part (a). On the other 

hand if ξ
k
 > z the vehicle cannot fully satisfy the demand of the customer, and has to execute a round trip to 

the depot for stock replenishment - this is represented by the second term of part (a). Part (b) of Eq. (5.1) 

represents the expected cost of the restocking action. Dynamic programming is used to recursively determine 

the optimal policy.  

 

Note that: 

� part (b) of Eq. (5.1), i.e. )(
)2(
zf j , is independent of z.  

� Yang et al. (2000) have shown that part (a) of Eq. (5.1), i.e. )(
)1(
zf j , is a monotonically decreasing 

function; i.e.:  

if z1 > z2  then  )( 1
)1(
zf j ≤  )( 2

)1(
zf j  

 

The formal proof is given in this reference and Appendix A. Based on these two facts Figure 5.2 shows the 

typical variation of )(
)1(
zf j and )(

)2(
zf j with respect to z. From this Figure it is clear that if zj

* is the 

intersection point of )(
)1(
zf j and )(

)2(
zf j then 

     )(
)2(
zf j   if  z ≤ zj

* 

fj (z) =           (5.3) 

     )(
)1(
zf j   if  z > zj

*
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Thus, the quantity zj
*
 represents a threshold below which, the vehicle should return to the depot and reload. If 

the vehicle’s load after serving customer j is above this threshold, then the preferable action is to continue to 

the next customer directly. At each stage of the dynamic programming algorithm )(
)2(
zf j of Eq. (5.1) is 

computed. Then )(
)1(
zf j  is computed in descending order of z until its value exceeds the value of )(

)2(
zf j . 

The last value of z for which )(
)1(
zf j ≤  )(

)2(
zf j is the threshold zj

* 
for customer j.  

 

 

 

 

 

 

 

 

 

Figure 5.2. The typical variation of the two parts )(
)1(
zf j and )(

)2(
zf j of Eq. (5.1) with respect to z. 

 

5.3 Analysis of the SVRDRP 

 

In order to further explore the effect of randomness on the minimum expected cost, we analyzed the effect of 

the variance of the demand (demand randomness) on cost, as well as the effect of the interaction of the 

variance and the mean demand. Note that it is clear that increasing the mean demand will increase the 

expected cost of the route. This is because the capacity of the vehicle is constrained and more returns to the 

depot are necessary to satisfy the increased demand. 

 

5.3.1 Effect of Randomness 

 

In order to obtain a better insight on how the standard deviation of the random demands affects the cost of 

the route, the following experiment was designed as shown in Table 5.1 below. Column 1 of this Table 

identifies 5 cases of random demand for the 4 customers of Column 2. Columns 3-8 present the probability 

Cost 

z 

)(
)1(
zf j
 

)(
)2(
zf j
 

zj
* 



University of the Aegean                              Department of Financial and Management Engineering 

       53 

mass functions for z = 0,…,5 per customer per case. Columns 9, 10 present the average of the mean demand 

x  per customer and the variance s of the demand per case. Finally, Column 11 presents the result of the 

Yang et al. algorithm per case. Note that in all 5 cases the average mean demand per customer x  set remains 

constant while the variance increases.  

 

 

Table 5.1. Randomness Analysis experiment. 

 

Yang et al             
Optimal solution 

Demand for item 

 
Cases of 
Random 
Demand 

Customers 

0 1 2 3 4 5 

Average 
Mean  

( x ) Variance 
Minimum 

Expected Cost 

                      

1 0 0 1 0 0 0 

2 0 1 0 0 0 0 

3 0 0 0 1 0 0 
1 

4 0 0 1 0 0 0 

2 s = 0 68 

                      

1 0 0,1 0,8 0,1 0 0 

2 0,1 0,8 0,1 0 0 0 

3 0 0 0,1 0,8 0,1 0 
2 

4 0 0,1 0,8 0,1 0 0 

2 s ≈ 0,45 72,36 

                      

1 0,1 0,1 0,6 0,1 0,1 0 

2 0,2 0,6 0,1 0,1 0 0 

3 0 0,1 0,1 0,6 0,1 0,1 
3 

4 0,1 0,1 0,6 0,1 0,1 0 

2 s ≈ 1 75,49 

                      

1 0,15 0,2 0,3 0,2 0,15 0 

2 0,35 0,3 0,2 0,15 0 0 

3 0 0,15 0,2 0,3 0,2 0,15 
4 

4 0,15 0,2 0,3 0,2 0,15 0 

2 s ≈ 1,26 77,87 

                      

1 0,2 0,2 0,2 0,2 0,2 0 

2 0,4 0,2 0,2 0,2 0 0 

3 0 0,2 0,2 0,2 0,2 0,2 
5 

4 0,2 0,2 0,2 0,2 0,2 0 

2 s ≈ 1,41 79,52 

 

 

≈ ≈
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The solution with s = 0 has been obtained with the algorithm presented in Chapter 3. The solutions with s > 0 

have been obtained using the Yang et al. algorithm presented in the current Chapter.  
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Figure 5.3. The relation between the value of s and the minimum expected cost of the route. 

 

Figure 5.3 shows the percent increase of the minimum expected cost of the optimal solution, with respect to 

the deterministic case (s = 0) as a function of s. From this Figure it is clear that the expected cost of the route 

increases almost linearly with the variance of the demand. Thus, in the Ex-van business case, the consistency 

of Sales affects the distribution costs directly. Customers with inconsistent demand may lead to high 

distribution costs.  

 



University of the Aegean                              Department of Financial and Management Engineering 

       55 

5.3.2 Mean – Variance Interaction 

 

In this Section we investigate the interaction between the mean and the variance of the demand; that is, 

whether an increase of the mean will change the effect of the variance shown in Section 5.3.1. To analyze 

this we performed two additional experiments for the 4-customer case of Section 5.3.1 and for the cases of s 

= 0 and s = 1.4. For both new experiments the average mean demand is equal to 1 ( x  = 1), lower than that of 

Table 5.1 ( x  = 2). The data are shown in Table 5.2.  

 

Table 5.2. Mean Analysis experiment. 

 

Yang et al 
Optimal solution 

Demand for item 

 
 

Cases of 
Random 
Demand 

Customers 

0 1 2 3 4 5 

Average 
Mean 

( x ) Variance 
Minimum 

Expected Cost 

                      

1 0 1 0 0 0 0 

2 1 0 0 0 0 0 

3 0 0 1 0 0 0 
1 

4 0 1 0 0 0 0 

1 (s = 0) 60 

                      

1 0,4 0,2 0,2 0,2 0 0 

2 0,6 0,2 0,2 0 0 0 

3 0,2 0,2 0,2 0,2 0,2 0 
2 

4 0,4 0,2 0,2 0,2 0 0 

1 (s ≈ 1,41) 67,21 

 

 

The results are shown in Figure 5.4. From this Figure it is clear that there is an interaction between the mean 

and the variance of the demand; i.e. the percent increase of the minimum expected route cost for the low 

average mean demand case (11.6 %) is lower than the percent increase for the high average mean demand 

case (16.7%). That is, the randomness affects the expected cost more in vehicles with lower capacity.  

≈
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Figure 5.4. Mean-Variance interaction. 

 

5.4 Conclusions 

 

In this chapter we presented the Stochastic Vehicle Routing with Depot Returns Problem (SVRDRP). The 

objective of the problem is to minimize the expected travel cost (distance) while serving all customers in a 

predefined order with a single vehicle. First, the problem was analyzed to determine the effect of the 

variance of the demand on the minimum expected cost function. It was found that the expected cost of the 

route increases almost linearly with the variance of the demand. Thus, in the Ex-van business case, the 

consistency of Sales affects the distribution costs directly. Secondly, the problem was analyzed in order to 

determine the interaction between the mean and the variance of the demand. It was found that this interaction 

exists; i.e. the percent increase of the minimum expected route cost for the low average mean demand case 

(11.6 %) is lower than the percent increase for the high average mean demand case (16.7%) in the example. 

This interaction is reasonable, since the randomness affects the expected cost more in vehicles with lower 

capacity. Therefore, no further statistical analysis is warranted. 

 

 

 



University of the Aegean                              Department of Financial and Management Engineering 

       57 

 

Chapter 6 
Multiple Product Extensions of the SVRDRP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1 Introduction 

 

In this Chapter we extend the Stochastic Vehicle Routing with Depot Returns Problem (SVRDRP) to address 

the case of distributing multiple product types. In line with Chapter 4 we address two cases; 

compartmentalized and unified load.  The characteristics and the mathematical formulations of the two 

problems are presented. New algorithms are developed to solve both problems. The performance of these 

algorithms is analyzed by solving a large number of sample problems per case.   
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6.2 Multiple Product Delivery: Compartmentalized Case 

 

In the business model addressed by this case, the vehicle carries different types of products, each within its 

own compartment. Thus, the capacity of the vehicle for each product is predefined and cannot be altered. A 

characteristic example is gasoline transport, in which the vehicle’s tank is compartmentalized in order to 

carry various types of gasoline (unleaded, premium, etc.).  

 

As before, the sequence of serving the customers is predefined. In this case, of course, the customer demand 

should be satisfied for all products. The demands per customer per product are independent discrete random 

variables, with known probability mass functions. The latter are derived in practice from historical data.  The 

vehicle is allowed to return to the depot in order to refill. At the depot, all compartments may be refilled up 

to their capacity. Exactly upon completion of service at each customer site, the vehicle’s driver has to make 

an identical decision with the one already discussed in Section 5.2, namely to continue towards the next 

customer or return to the depot.  

 

The vehicle may have to visit a customer twice, if it cannot fully meet the demand of this customer during 

the first visit. It is assumed that service at a customer site and refill at the depot happen instantly upon arrival 

of the vehicle at the respective location. The objective of the problem is to serve all customers (replenish 

their stock of all items) and minimize the expected travel cost. 

 

 

6.2.1 Dynamic Programming Formulation 

 

We assume that the vehicle is divided into K sections and each section is suitable for carrying one product 

type only (see Figure 4.1a). Let iQ  be the capacity of the vehicle for product }. , ,1{ Ki K∈ Clearly, 

∑ =
=

K

i i QQ
1

.  Note that all product quantities are calculated using the same unit of measure e.g. 3m or kg. Let 

zi represent the stock on board of each product after serving customer j.  

 

We declare i

jξ  the stochastic demand of customer } , ,1{ nj K∈  for product type }. , ,1{ Ki K∈  i

jξ  follows a 

discrete distribution with mi possible values, i1ξ , i2ξ , …, imξ and probability mass function: 
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p
i
jk  = P( i

jξ  = 
kξ )     (6.1) 

 

For simplicity, but without loss of generality, we will develop the dynamic programming formulation for two 

product types (the formulation for 3 product types is presented in Appendix B).  

 

Let ),( 21 zzf j denote the total minimum expected cost from customer j onward if the vehicle, after serving 

customer j, carries quantities z1 of product type-1 and z2 of product type-2. If Sj represents the set of all 

possible loads that a vehicle can carry after serving customer j, then ),( 21 zzf j for (z1,z2) ∈ Sj satisfies the 

dynamic programming recursion: 
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             (6.2) 

   ∑∑
=

+++
=

+ −−++
2

2

21

21

1

1 1

2
,1

1
,1211

1

1,00, ),(

m

k

kjkj
kk

j

m

k

jj ppQQfcc ξξ    part (b) 

  

 

In Eq. (6.2), part (a) represents the expected cost of going directly to the next customer, whereas part (b) 

represents the expected cost of the restocking action. Part (a) consists of four summation terms (the four 

rows), which correspond to the four cases of Figure 6.1.  
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Figure 6.1. The solution space per customer point (for (a) compartmentalized and (b) unified load). 

 

The first sum of part (a) represents the expected cost incurred if the stock of both items z1 and z2 is sufficient 

to fully satisfy the demands 1kξ and 2kξ  of customer j+1 (Area A in part (a) of Figure 6.1).  The loads of the 

vehicle before and after serving customer j+1 are schematically represented above the respective arcs (the 

demand of customer j+1 is presented above the node) in Figure 6.2. The stock left on board after serving 

customer j+1 is (z1 - 1kξ ) ≥ 0 and (z2 - 2kξ ) ≥ 0 respectively.   
 

             z1 - 1kξ , z2 - 2kξ  

          

          

 

Figure 6.2. The case that the demand is fully satisfied:  z1≥ 1kξ , z2 ≥ 2kξ . 

 

The second sum of part (a) represents the expected cost incurred if the vehicle proceeds to the next customer 

directly and the stock z1 is not sufficient to fully satisfy the demand 1kξ of the next customer, while the stock 

z2 is sufficient to fully satisfy the demand 2kξ  (Area B in part (a) of Figure 6.1).  The path of the vehicle and 

the corresponding vehicle loads are shown in Figure 6.3.  

  j 

z1,z2 

j+1 

1kξ , 2kξ  

2kξ  

1kξ  

A B 

C D 

z1 

z2 

Part (a) - Compartmentalized Part (b) – Unified load 

2kξ  

1kξ  
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C D 

z1 

z2 

Q 

Q 
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        Q1 – ( 1kξ - z1), Q2  

          

          

 

 

 

Figure 6.3. The case in which z1<
1kξ and z2 ≥ 2kξ . 

 

In this case, the vehicle will visit customer j+1, it will fully satisfy demand 2kξ for product type-2 but will 

partially satisfy demand 1kξ for product type-1; thus, it is required to return to the depot for stock 

replenishment. The stock left on board after serving customer j+1 for the first time is 0 and (z2 - 2kξ ) ≥ 0, 

respectively. The stock left on board after serving customer j+1 is Q1 – ( 1kξ - z1) for product type-1 and Q2 

for product type-2 respectively.  

 

The third sum of part (a) represents the expected cost incurred if the stock z2 is not sufficient to fully satisfy 

the demand 2kξ of the next customer, while the stock z1 is sufficient to satisfy demand 1kξ  (Area C in part (a) 

of Figure 6.1). The path of the vehicle and the corresponding vehicle loads are shown in Figure 6.4 below. 

The load balance is analogous to the previous case. 

 

        Q1, Q2 – ( 2kξ - z2) 

          

          

 

 

 

Figure 6.4. The case in which z2 <
2kξ  and z1≥ 1kξ . 
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The fourth term represents the expected cost incurred if the stock of both items z1 and z2 is not sufficient to 

fully satisfy the demands 1kξ or 2kξ  of the next customer (Area D in part (a) of Figure 6.1).  The path of the 

vehicle and the corresponding vehicle loads are shown in Figure 6.5 below. 

 

 

                         Q1 – ( 1kξ - z1), Q2 – ( 2kξ - z2) 

          

          

 

 

 

Figure 6.5. The case in both z1<
1kξ  and z2 <

2kξ . 

 

Part (b) of the minimization equation, Eq. (6.2), represents the expected cost incurred if the vehicle proceeds 

to the next customer j+1 via the depot and, therefore, the stock of both items on board z1 and z2 is 

replenished to Q1 and Q2 respectively. Due to the fact that this is a proactive depot return, the values of z1 

and z2 do not affect the result, which is thus independent of z1 and z2. The path of the vehicle and the 

corresponding vehicle loads are shown in Figure 6.6 below. 

 

 

        Q1 - 1kξ , Q2 – 2kξ  

          

          

 

 

 

Figure 6.6. The proactive depot return case. 
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6.2.2 Optimal Routing Policy 

 

The expected value of the minimum expected cost can be estimated using Eq. (6.2). However, in order to 

develop the policy which leads to achieving this minimum expected cost we will extend the threshold 

theorem presented by Yang et al. (2000) to multiple dimensions.  

 

LEMMA 1. 

    fj(z1, z2) ≤  fj(Q1, Q2)+ 2c0j for all  z1, z2 ∈ Sj   (6.3) 

Proof. From Eq. (6.2) we obtain: 

fj(z1, z2) ≤ ∑∑
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jj ppQQfcc ξξ   (6.4) 

 

For z1 = Q1 and z2 = Q2 part (a) of Eq. (6.2) is always less than or equal to part (b) since 1,00,1, ++ +≤ jjjj ccc ;  

therefore: 

  fj(Q1, Q2) = 
2

,1
1

,1

1 1

2111, 21

2

1

1

2

2

1 ),( kjkj
k

m

k

m

k

k
jjj ppQQfc ++

= =
++ ∑∑ −−+ ξξ    (6.5) 

taking into consideration that the last three terms of part (a) of Eq.(6.2) become zero. 

 

Substituting Eq. (6.5) in Eq. (6.4) results in: 

   fj(z1, z2) ≤ ]),([ 1,211,00, ++ −++ jjjjj cQQfcc  

≤ ]),([][ 1,211,,00, ++ −+++ jjjjjjj cQQfccc  ≤ ),(2 210, QQfc jj +  QED 

 

Consider *
2

*
1 , zz  the item quantities on board after serving customer j. 

 

THEOREM 1: For each customer j, there exists a threshold function jj czzh =),(
*

2
*
1 , such that the optimal 

decision, after serving customer j is to continue to customer j+1 if ),( 21 zzh j ≥ cj or return to the depot 

otherwise.  
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Proof: We will first show by induction that for all (z1,z2) ∈ Sj , fj(z1,z2) is a non-increasing function. That is, 

for z1, z2  ∈ Sj and δ1, δ2 ≥ 0 

 

fj(z1+δ1, z2+δ2) ≤  fj(z1, z2)      (6.6) 

 

This relationship is true for the last customer n, where fn(z1,z2) = cn0 is independent of (z1,z2). Hence fn(z1,z2) 

is monotonically non-increasing with respect to (z1,z2) ∈ Sn. We will now prove that, if fj+1(z1,z2) is 

monotonically non-increasing with respect to (z1,z2) ∈ Sj+1, then fj(z1,z2) is also monotonically non-increasing 

with respect to (z1,z2) ∈ Sj. Let Hj(z1,z2) and H’j(z1,z2) denote the values of part (a) and part (b) inside the 

minimisation in Eq.(6.2).  
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If we expand each one of the last three terms taking into account the regions of Figure 6.7 we obtain: 
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Figure 6.7. The definition space of Hj(z1, z2). 

 

 

Similarly Hj(z1+δ1, z2+δ2) can be written using Figure 6.8 as follows: 
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If we expand each one of the above terms taking into account the regions of Figure 6.8 we obtain: 
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Figure 6.8. The definition space of Hj(z1+δ1, z2+δ2). 

 

 

Subtracting the terms that correspond to the same nine regions of Figures 6.7 and 6.8 we obtain: 

 

Hj(z1, z2) – Hj(z1+δ1, z2+δ2) =  

 

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]=++−+++−+++−

+++−+++−+++−+

+++−+++−+++−

)δz ,δz()z ,z()δz ,δz()z ,z()δz ,δz()z ,z(

)δz ,δz()z ,z()δz ,δz()z ,z()δz ,δz()z ,z(

)δz ,δz()z ,z()δz ,δz()z ,z()δz ,δz()z ,z(

2211
'

212211
'

212211
'

21

2211
'

212211
'

212211
'

21

2211
'

212211
'

212211
'

21

32412

223141

12211

d
j

d
j

c
j

d
j

c
j

c
j

b
j

d
j

a
j

d
j

a
j

c
j

b
j

b
j

a
j

b
j

a
j

a
j

HHHHHH

HHHHHH

HHHHHH

 

=






−−+ ++

≤
+

≤
+ ∑∑ 2

,1
1

,1

:

211

:

1, 21

2

2
2

2

1

1
1

1

),( kjkj
k

zk

k
j

zk

jj ppzzfc
kk

ξξ
ξξ

  







−+−+−− ++

≤
+

≤
+ ∑∑ 2

,1
1

,1

:

22111

:

1, 21

2

2
2

2

1

1
1

1

),( kjkj
k

zk

k
j

zk

jj ppzzfc
kk

ξδξδ
ξξ

 

z2 

z1 

z2+δ2 

z1+δ1 
1
k

ξ  

2
k

ξ

Q1 

Q2 

(d′) 

 (b′1) 

 (b′2) 

(a′1) 

(a′4) 

(a′2) 

(a′3) 

(c′1) (c′2) 



University of the Aegean                              Department of Financial and Management Engineering 

       68 

+ [ ]






−++ ++

≤
++

+≤<
∑∑ 2

,1
1

,1

:

21110,1

:
21

2
2

2

1

11
1

11

),(2 kjkj

zk

k
jj

zzk

ppQQzfc
kk ξδξ

ξ  







−+−+− ++

≤
+

+≤<
∑∑ 2

,1
1

,1

:

22111

:
21

2

2
2

2

1

11
1

11

),( kjkj
k

zk

k
j

zzk

ppzzf
kk

ξδξδ
ξδξ

 

+ [ ]






−++ ++

≤
++

<+
∑∑ 2

,1
1

,1

:

21110,1

:
21

2
2

2

1

1
111

),(2 kjkj

zk

k
jj

zk

ppQQzfc
kk ξξδ

ξ   

[ ]






−+++− ++

≤
++

+>
∑∑ 2

,1
1

,1

:

211110,1

:
21

2
2

2

1

11
1

1

),(2 kjkj

zk

k
jj

zk

ppQQzfc
kk ξδξ

ξδ  

+ [ ]






−++ ++

+≤<
++

≤
∑∑ 2

,1
1

,1

:

22110,1

:
21

22
2

22

2

1
1

1

),(2 kjkj

zzk

k
jj

zk

ppQzQfc
kk δξξ

ξ  







−+−+− ++

+≤<
+

≤
∑∑ 2

,1
1

,1

:

22111

:
21

2

22
2

22

1

1
1

1

),( kjkj
k

zzk

k
j

zk

ppzzf
kk

ξδξδ
δξξ

 

+ [ ]






−+−++ ++

+≤<
++

+≤<
∑∑ 2

,1
1

,1

:

221110,1

:
21

22
2

22

21

11
1

11

),(2 kjkj

zzk

kk
jj

zzk

ppQzQzfc
kk δξδξ

ξξ  







−+−+− ++

+≤<
+

+≤<
∑∑ 2

,1
1

,1

:

22111

:
21

2

22
2

22

1

11
1

11

),( kjkj
k

zzk

k
j

zzk

ppzzf
kk

ξδξδ
δξδξ

 

+ [ ]






−+−++ ++

+≤<
++

<+
∑∑ 2

,1
1

,1

:

221110,1

:
21

22
2

22

21

1
111

),(2 kjkj

zzk

kk
jj

zk

ppQzQzfc
kk δξξδ

ξξ  

[ ]






−+++− ++

+≤<
++

+>
∑∑ 2

,1
1

,1

:

211110,1

:
21

22
2

22

1

11
1

1

),(2 kjkj

zzk

k
jj

zk

ppQQzfc
kk δξδξ

ξδ  

+ [ ]






−++ ++

<+
++

≤
∑∑ 2

,1
1

,1

:

22110,1

:
21

2
222

2

1
1

1

),(2 kjkj

zk

k
jj

zk

ppQzQfc
kk ξδξ

ξ  

[ ]






−+++− ++

+>
++

≤
∑∑ 2

,1
1

,1

:

222110,1

:
21

22
2

2

2

1
1

1

),(2 kjkj

zk

k
jj

zk

ppQzQfc
kk δξξ

ξδ  



University of the Aegean                              Department of Financial and Management Engineering 

       69 

+ [ ]






−+−++ ++

<+
++

+≤<
∑∑ 2

,1
1

,1

:

221110,1

:
21

2
222

21

11
1

11

),(2 kjkj

zk

kk
jj

zzk

ppQzQzfc
kk ξδδξ

ξξ  

[ ]






−+++− ++

+>
++

+≤<
∑∑ 2

,1
1

,1

:

222110,1

:
21

22
2

2

2

11
1

11

),(2 kjkj

zk

k
jj

zzk

ppQzQfc
kk δξδξ

ξδ  

+ [ ]






−+−++ ++

<+
++

<+
∑∑ 2

,1
1

,1

:

221110,1

:
21

2
222

21

1
111

),(2 kjkj

zk

kk
jj

zk

ppQzQzfc
kk ξδξδ

ξξ  

[ ]






−++−+++− ++

+>
++

+>
∑∑ 2

,1
1

,1

:

22211110,1

:
21

22
2

2

21

11
1

1

),(2 kjkj

zk

kk
jj

zk

ppQzQzfc
kk δξδξ

ξδξδ   (6.9) 

 

 

In Eq. (6.9) we can distinguish two types of terms. The first type includes the first, third, sixth, seventh, 

eighth, and ninth terms. Considering the first term we have: 
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Since fj+1(z1, z2) is monotonically non-increasing, this term is non-negative. Similarly we can show that the 

differences corresponding to the third, sixth, seventh, eighth, and ninth terms are also non-negative.  

 

The second type of terms includes the second, forth and fifth terms. Considering the second term we have:   

 

)δz ,δz()z ,z( 2211
'

21
21 ++− a

j
b
j HH = 

  [ ] 2
,1

1
,1

:

2211121110,1

:
21

2
2

2

211

11
1

11

),(),(2 kjkj

zk

kk
j

k
jj

zzk

ppzzfQQzfc
kk

++
≤

+++
+≤<

∑∑ −+−+−−++=
ξδξ

ξδξδξ  

 

Recall that from LEMMA 1: 

    fj(z1, z2) ≤  fj(Q1, Q2)+ 2c0j for all  z ∈ Sj  

therefore: 

),( 21

22111
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j zzf ξδξδ −+−++ ≤ 0,1211 2),( ++ + jj cQQf  
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However,  

),( 211 QQf j+ ≤ ),( 2111
1 QQzf
k

j ξ−++  
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1 z
k >ξ  and 1+jf  is non-increasing.  Thus: 
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Therefore )δz ,δz()z ,z( 2211
'

21
21 ++− a

j
b
j HH ≥ 0. Similarly we can show that the forth and fifth terms of Eq. 

(6.9) are also non-negative. 

 

Considering the non-negativity of all terms of Eq. (6.9) it is clear that Hj(z1, z2) – Hj(z1+δ1, z2+δ2)≥ 0 and 

hence, Hj(z1, z2) is a non-increasing function. 

 

Figure 6.9. The combined threshold graphical representation. 
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Note now that part (b) ),(' 21 zzH j  of Eq. (6.2) is independent of 21 , zz  and, thus, a constant 

jj HzzH '),(' 21 =  in the 21 , zz  space. Figure 6.9 plots the terms ),( 21 zzH j  and jH '  with ),( 21 zzH j  been 

non-increasing as shown above. From this Figure it is clear that { }),('),,(min),( 212121 zzHzzHzzf jjj =  is a 

non-increasing function.  

 

Furthermore, the intersection ),( 21 zzH j ∩ jH '  can in general be described by a function of the form 

czzh j =),( 21 . This is more clearly shown in Figure 6.10. 

 

 

Figure 6.10. A better view of the threshold function. 

 

 

Every (z1,z2) combination that lies within the highlighted area, jj czzh <),( 21 , corresponds to a depot return 

before visiting customer j+1. For (z1,z2) combinations that lie outside the highlighted area jj czzh ≥),( 21 , the 

vehicle should proceed to the next customer. This concludes the proof of Theorem 1.  

 

This theorem provides the optimal routing policy; i.e. the policy that if followed by the vehicle, we will 

obtain the minimum expected value of the travel cost. 

 

z1 

z2 

czzh j =),( 21  
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6.2.3 Solution Algorithm 

 

In order to solve the compartmentalized case of multiple product delivery, we developed an appropriate 

algorithm that uses Dynamic Programming to derive the optimal solution in a reasonable amount of time. 

Based on the formulation presented in Section 6.2.1, the algorithm starts from the end of the route (last 

customer to be visited) and iterates towards the beginning of the route, calculating the remaining minimum 

expected cost from each customer site until the end of the route. This procedure computes the minimum 

expected cost of the route, given a distance matrix, and demand probability mass functions. Based on the 

result of the algorithm, the threshold function czzh j =),( 21  for each customer j can be obtained, in line with 

what has already been described in Section 6.2.2 to provide the optimal routing policy. A characteristic 

example follows below. 

 

Consider the 5-customer network of Figure 6.11. The vehicle capacity is 10=Q  units and is equally split 

between two products (Q1 = Q2 = 5); the demand i

jξ  for each product i (i = 1,2) and customer j (j = 1, …, 5) 

is given in Appendix C, and the distances between the nodes cij are given in Figure 6.11. 

 

 

Figure 6.11. 5-customer network for the multiple-product extension. 

 

The problem is solved using the dynamic programming algorithm. Let ),( 21 zz  be the remaining quantities of 

each product type in the vehicle. Let ),( 21 zzV j  and ),( 21 zzx j  be the minimum expected cost and the 

corresponding decision after customer j  has been served. Clearly, 1),( ,18),( 215215 == zzxzzV  for 

{ }.5,...,0},5 , ,0{ 21 zz K∈  In Tables 6.1-6.5 we provide the results for nodes 4, 3, 2, 1, 0. In these Tables, 
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),( 21 zz  represents the quantity carried by the vehicle after customer j has been served; each cell includes two 

values: The first is the value of ),( 21 zzx j  and the second is the value of ),( 21 zzV j . 

 

Table 6.1. Results obtained for node 4. 

 

 

        z1           

                         

    z2      

0 1 2 3 4 5 

0 1; 40 1; 40 1; 40 1; 40 1; 40 1; 40 

1 1; 40 1; 40 1; 40 1; 40 1; 40 1; 40 

2 1; 40 1; 40 1; 40 1; 40 1; 40 1; 40 

3 1; 40 1; 40 1; 40 1; 40 1; 40 1; 40 

4 1; 40 1; 40 1; 40 0; 37,6 0; 34,7 0; 34,4 

5 1; 40 1; 40 1; 40 0; 37,2 0; 34,4 0; 34,0 

 
Table 6.2. Results obtained for node 3. 

 

 

        z1           

                         

    z2      

0 1 2 3 4 5 

0 1; 45,4 0; 45,4 0; 44,7 0; 44,5 0; 44,4 0; 44,4 

1 1; 45,4 0; 43,9 0; 42,8 0; 42,1 0; 41,9 0; 41,9 

2 1; 45,4 0; 43,5 0; 42,3 0; 41,6 0; 41,5 0; 41,4 

3 1; 45,4 0; 43,3 0; 42,1 0; 41,4 0; 41,2 0; 41,1 

4 1; 45,4 0; 43,2 0; 41,9 0; 41,3 0; 41,0 0; 40,9 

5 1; 45,4 0; 43,2 0; 41,9 0; 41,2 0; 39,9 0; 38,4 

 

 
Table 6.3. Results obtained for node 2. 

 

 

        z1           

                         

    z2      

0 1 2 3 4 5 

0 1; 52,0 1; 52,0 1; 52,0 1; 52,0 1; 52,0 1; 52,0 

1 1; 52,0 1; 52,0 1; 52,0 1; 52,0 1; 52,0 1; 52,0 

2 1; 52,0 0; 51,9 0; 51,8 0; 51,7 0; 51,6 0; 51,6 

3 1; 52,0 0; 51,3 0; 50,9 0; 50,7 0; 50,5 0; 50,4 

4 0; 51,47 0; 49,3 0; 48,4 0; 47,5 0; 47,0 0; 46,8 

5 0; 51,46 0; 49,3 0; 47,5 0; 46,2 0; 45,4 0; 44,9 
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Table 6.4. Results obtained for node 1. 

 

 

        z1           

                         

    z2      

0 1 2 3 4 

 

5 

0 1; 70,2 1; 70,2 1; 70,2 1; 70,2 1; 70,2 1; 70,2 

1 1; 70,2 1; 70,2 1; 70,2 1; 70,2 1; 70,2 1; 70,2 

2 1; 70,2 1; 70,2 1; 70,2 1; 70,2 1; 70,2 1; 70,2 

3 1; 70,2 1; 70,2 1; 70,2 0; 70,0 0; 69,6 0; 69,5 

4 1; 70,2 1; 70,2 0; 70,0 0; 69,3 0; 68,7 0; 68,6 

5 1; 70,2 1; 70,2 0; 69,5 0; 68,4 0; 67,6 0; 67,2 

 

 

 

Table 6.5. Result obtained for node 0. 

 

 

        z1           

                       

    z2      

5 

5 84,0 

 

Therefore the minimum expected total cost is equal to 84,0.  

 

Figure 6.12 illustrates the threshold function czzh =),( 211 as obtained from the results of Table 6.4 (for 

Customer 1). It is clearly seen from Table 6.4 that H′1 = 70,2. For all (z1,z2) pairs with H1(z1,z2) ≤ H′1 the 

vehicle should proceed to the next customer directly.  

 

H1 > H′1 

H1 ≤  H′1 
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Figure 6.12. The corresponding load combinations after serving customer 1. 

 

Figure 6.13 illustrates the threshold function h6(z1,z2) of customer-6 in a different example with Q1=Q2=10.  
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Figure 6.13. The corresponding load combinations after serving customer 6. 
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This figure clearly demonstrates the existence of h6(z1,z2) according to which for any combination below the 

border defined by the switch between the red and green points, the optimal decision is to return to the depot 

in order to refill the vehicle. Conversely, for any combinations above this border the optimal decision would 

be to proceed directly to the next customer. This policy can be very simply and clearly communicated to the 

vehicle driver and result in significant cost savings for the fleet operator. The performance of the algorithm 

was found to be within acceptable levels. As an indication, for a test problem of 10 customer points, 2 

products and vehicle capacity 10 units per product, the algorithm derived the minimum expected cost, as 

well as the threshold curves per customer, within 9 sec. The number of combinations examined for each of 

the customer points 2-9 were approximately 1330. The experiments were run on a PC equipped with Intel 

Pentium IV, at 2.4 GHz and 512 MB of RAM. 

 

In order to further assess the performance of the algorithm for the two-product case a large number of 

problem test cases were created and run. We generated approximately 30,000 problems of appropriate 

characteristics and the results obtained are shown in Figure 6.14. 

2 Product case
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Figure 6.14. Performance results of the algorithm. 

Three different problem test cases are presented in this figure. The first test case (10,000 randomly generated 

problems) concerns a vehicle with total capacity Q = 10 equally split between the two compartments, and is 
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shown in green color. The second test case (another 10,000 randomly generated problems) concerns a 

vehicle with total capacity Q = 20 equally split between the two compartments, and is shown in blue color. 

The third test case (another 10,000 randomly generated problems) concerns a vehicle with total capacity Q = 

30 equally split between the two compartments, and is shown in red color. Each point in these curves 

corresponds to the average solution time for 1,000 randomly generated problems. The demand distributions 

were generated randomly.  

 

From Figure 6.14 it can be clearly seen that for a given number of customers, the increase of the vehicle 

capacity (Q = 10, 20, 30) results in a significant increase in the computational time of the algorithm (note 

that the scale of the y-axis is logarithmic). On the other hand, if the capacity of the vehicle is kept constant, 

and the number of customers is increased, the computational time also increases, almost linearly. In order to 

analyze this latter relationship further, ten different test cases were run with Q = 20, ranging from five to fifty 

customer points (1000 randomly generated problems for each customer) and are shown in Figure 6.15. Each 

point in this Figure represents the average time for the 1000 problems of the particular problem set. The 

increase in the computational time is indeed linear with the number of customers. Even at the 50-customer 

instance the algorithm took approximately 1635 seconds (= 27 minutes) in order to obtain the solution of the 

problem. 
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Figure 6.15. Performance results with up to 50 customer points. 
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6.3 Multiple Product Delivery: Unified Load 

 

Recall from Chapter 4 that in the unified load case (shown in Figure 4.1) the vehicle may carry any quantity 

of product }, , ,1{ Ki K∈  provided that the total capacity Q of the vehicle is not exceeded. 

 

Upon completion of service at customer site j, the vehicle’s driver has to make the same decision as the one 

described in Sections 5.2 and 6.2, i.e. proceed to customer j+1, or return to the depot in order to refill the 

vehicle and resume the route to serve customer j+1. The objective of the problem is to serve all customers 

(replenish their stock for all items) and minimize travel cost. 

 

As before, we declare i

jξ  the stochastic demand of customer } , ,1{ nj K∈  for product i. The demand per 

customer is no longer independent with respect to the product types, since for each customer j 1k
jξ +…+ kk

jξ ≤ 

Q. Thus, the probability mass function Pj(z1, z2, …, zK) is, in general, joint.  

 

 

6.3.1 Dynamic Programming Formulation 

 

We will focus on the 2 product case, which can be extended to k>2 products in a straightforward manner. Let 

zi represent the stock onboard for product i after serving customer j. Let 

),(Prob),( 21 21
21

k
j

k
jj kkp ξξξξ === represent the combined probability mass function. Also let 

),( 21 zzf j denote the minimum expected cost from customer j onward. Note that all product quantities are 

calculated using the same unit of measure e.g. 3m or kg.  

 

In this case there are additional issues to be considered. First, upon visiting the depot, an additional decision 

needs to be made regarding the quantities of stock to be loaded onto the vehicle. Let θ be the quantity of 

product type-1 to be loaded onto the vehicle. Then in the 2-product case, the quantity of product type-2 will 

be Q-θ.  Secondly, two sequential returns to the depot may occur in this problem. This may occur only if the 

vehicle does not proceed to client j+1 but visits the depot first. In this case if the quantity θ for product type-

1 (or Q-θ for product type-2) loaded onto the vehicle at the depot is not adequate to fully satisfy the client’s 

demand, the vehicle will return to the depot once more, and make an additional, informed this time, decision. 
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The stock s loaded to the vehicle for product type-1 (and Q-s for product type-2) will guarantee that the 

demand of customer j+1 is fully satisfied. This is shown in Figure 6.16 for the case where θ< 1kξ . 

        

               s - ( 1kξ -θ), Q-s  

 

 

              

            

          

 

 

 

Figure 6.16. The case that θ < 1

1
kξ . 

The mathematical formulation of the unified load problem (the proof of which is given in Appendix F) can 

be obtained using part (b) of Figure (6.1) and (6.16) and is shown below: 
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j+1 1kξ , 2kξ  

       D 

  j 

θ, Q-θ 

s, Q-s 

0, Q-(θ- 2kξ ) 

(term a) 

(term b) 

(term c) 

(term d) 

z1,z2 

(part a) 

(part b) 
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In Eq. (6.10) the first part in the minimization represents the expected cost of going directly to the next 

customer, whereas the second part represents the expected cost of the restocking action. As it can be clearly 

observed, the first part of the minimization equation includes four terms, which correspond to the four cases 

in  part (b) of Figure 6.1.  

 

The first term (after cj,j+1) represents the expected cost incurred if the vehicle proceeds to the next customer 

(j+1) directly and the stock of both products is sufficient to fully satisfy the demands 1kξ , 2kξ of the next 

customer (Area A in part (b) of Figure 6.1). The loads of the vehicle before and after serving customer j+1 

are schematically represented in Figure 6.17 below. 

 

 

             z1 - 1kξ , z2 - 2kξ  

          

          

 

Figure 6.17. The case in which the demand is fully satisfied:  z1≥ 1kξ , z2 ≥ 2kξ . 

 

The second term represents the expected cost incurred if the vehicle proceeds to the next customer directly 

and the stock on board of product type-1 is not sufficient to fully satisfy the demand of the next customer, 

while the stock on board of product type-2 is sufficient (Area B in part (b) of Figure 6.1). The path of the 

vehicle and the corresponding vehicle loads are shown in Figure 6.18 below.  

 

        θ – ( 1kξ - z1), Q-θ  

          

          

 

 

 

Figure 6.18. The case in which z1<
1kξ and z2 ≥ 2kξ . 

 

 

  j 

z1,z2 

j+1 

1kξ , 2kξ  

j+1 

1kξ , 2kξ  

       D 

  j 

z1,z2 

 

0, z2 -
2kξ  

θ, Q-θ 
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In this case, the vehicle will visit customer j+1, it will fully satisfy the demand 2kξ for product type-2 but 

will partially satisfy the demand 1kξ for product type-1, and will, therefore, return to the depot for stock 

replenishment. There, it will load θ units of measure for product type-1 and Q-θ for product type-2. The 

stock left on board after serving customer j+1 is θ – ( 1kξ - z1) for product type-1 and Q-θ for product type-2. 

Note that always θ ≥ 1kξ - z1, since the exact value of 1kξ is known upon visiting the customer. Note also the 

additional minimization inside the parenthesis the purpose of which is to select the optimal θ (lower cost 

incurred) for this stage of the algorithm. 

 

The third term represents the cost incurred if the vehicle proceeds to the next customer directly and the stock 

on board of product type-1 is sufficient to fully satisfy the demand 1kξ of the next customer, while the stock 

of product type-2 is not sufficient to satisfy 2kξ (Area C in part (b) of Figure 6.1). This case is analogous to 

the previous one; the path of the vehicle and the corresponding vehicle loads are shown in Figure 6.19. Note 

also the additional minimization inside the parenthesis whose purpose is to select the optimal θ (lower cost 

incurred) for that stage of the algorithm. 

 

 

        θ, (Q-θ) – ( 2kξ - z2)   

          

          

 

 

 

Figure 6.19. The case in which z1≥ 1kξ and z2 <
2kξ . 

 

The fourth term represents the cost incurred if the vehicle goes to the next customer directly and neither the 

stock of product type-1 nor the stock of product type-2 are sufficient to fully satisfy the demand 1kξ , 2kξ  

(Area D in part (b) of Figure 6.1). The path of the vehicle and the corresponding vehicle loads are shown in 

Figure 6.20. Note also the additional minimization inside the parenthesis whose purpose is to select the 

optimal θ (lower cost incurred) for that stage of the algorithm. 

j+1 

1kξ , 2kξ  

       D 

  j 

z1,z2 

 

 z1 -
1kξ , 0 

θ, Q-θ 
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             θ – ( 1kξ - z1), (Q-θ) – ( 2kξ - z2)   

          

          

 

 

 

Figure 6.20. The case in both z1<
1kξ  and z2 <

2kξ . 

 

The second part of the minimization equation Eq. (6.10) consists of three terms (after the sum 1,00, ++ jj cc ). 

Note the additional external minimization of the entire part (b) of Eq. (6.10) whose purpose is to select the 

optimal θ (lower cost incurred) for that stage of the algorithm. Due to the fact that this is a proactive depot 

return, the values of z1 and z2 do not affect the result, which is thus independent of z1 and z2. Furthermore, 

since 1kξ and 2kξ were not known the quantities θ and Q-θ loaded at the depot may not be sufficient to 

satisfy the demand of customer j+1. The first term of the second part represents the case in which the vehicle 

visits the depot, loads θ of product type-1 and Q-θ of product type-2, proceeds to customer j+1 and can fully 

satisfy demand 1kξ , 2kξ . This is shown in Figure 6.21. 

     

               (θ- 1kξ ), (Q- θ- 2kξ )  

 

 

              

            

          

Figure 6.21. The case in which θ ≥ 1

1
kξ and Q- θ ≥ 2

2
kξ . 

 

The second term represents the case in which upon visiting customer j+1 the vehicle cannot satisfy the 

customer’s demand for product type-1. In this case, the vehicle will return to the depot once more, and make 

an additional, informed this time, decision for loading stock s for product type-1 (and Q-s for product type-2) 

in order to guarantee that it will fully satisfy the demand of customer j+1 (see Figure 6.16). In addition to the 

j+1 

1kξ , 2kξ  

       D 

  j 

z1,z2 

 

 0,0 

θ, Q-θ 

j+1 1kξ , 2kξ  

       D 

  j 

θ, Q-θ 

z1,z2 
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external minimization with respect to θ, note the internal minimization (inside the parenthesis) with respect 

to s, whose purpose is to select the optimal s (lower cost incurred) for that stage of the algorithm. 

 

The third term represents the case that after visiting customer j+1 the vehicle cannot satisfy the customer’s 

demand for product type-2. The course of action here is analogous to the one discussed previously. This is 

shown in Figure 6.22. In addition to the external minimization with respect to θ, note the internal 

minimization (inside the parenthesis) with respect to s, whose purpose is to select the optimal s (lower cost 

incurred) for that stage of the algorithm. 

        

               s, Q-s- [ 2kξ -(Q-θ)]  

 

 

              

            

          

 

Figure 6.22. The case that Q-θ < 2kξ . 

 

 

 

6.3.2 Problem Characteristics 

 

The value of the minimum expected cost can be estimated using Eq. (6.10). However, in order to develop the 

policy which leads to achieving this minimum expected cost for the unified load case we need to investigate 

a threshold theorem analogous to Theorem 1 of the compartmentalized load case. Proceeding in the same 

fashion as in the latter case we first introduce Lemma 2 and then Theorem 2. 

 

LEMMA 2. 

    ),(min2),(
0

021 θθ
θ

−+≤
≤≤

Qfczzf j
Q

jj  for all  z1,z2 ∈ Sj  (6.11) 

 

Proof. From Eq. (6.10) we obtain: 

j+1 1kξ , 2kξ  

       D 

  j 

θ, Q-θ 

s, Q-s 

θ- 1kξ , 0 z1,z2 
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For z1 = θ and z2 = Q-θ part (a) of Eq. (6.10) becomes:  
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Regarding the above function, note that in [terms (b) and (c) of Eq. (6.10)] the quantity of product-1 loaded 

to the vehicle upon its return to the depot is denoted by s (not to be confused with z1 = θ). Furthermore term 

(d) of Eq. (6.10) is zero since ( ) 021
1 ==−+>++ QQP

kk
j θθξξ .  

 

From Eq. (6.10) and for z1 = θ and z2 = Q-θ the minimum value of ),( θθ −Qf j with respect to 0 ≤ θ ≤ Q, i.e. 

),(min
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Qf j
Q

 is given by part (a).  
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The left-hand side of the above inequality is given by considering the minimum value of Eq. (6.13) with 

respect to 0 ≤ θ ≤ Q, while the right-hand side is part (b) of Eq. (6.10). This inequality holds since 

1,00,1, ++ +≤ jjjj ccc . 

 

From Eqs. (6.14) and (6.13) we obtain: 
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 (6.15) 

 

 

Note that the sum of the last three terms of the right-hand side of Eq. (6.15) is identical to the sum of the last 

three terms of the right-hand side of Eq. (6.12). By substituting the former to the latter we obtain: 
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Let now Hj(z1,z2) and H’j(z1,z2) denote the values of part (a) and part (b) inside the minimisation of Eq. 

(6.10). Note that part (b) is independent of the values of z1,z2. We will show that a theorem similar to 

Theorem 1 (discussed in Section 6.2.2) holds for the unified load case. 

 

Let *
2

*
1 , zz  the item quantities on board after serving customer j.  

 

 QED 
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THEOREM 2: In the unified load case of Eq. (6.10), for each customer j, there exists a threshold function 

j
u

j
u czzh =),( 21 , such that the optimal decision, after serving customer j, is to continue to customer j+1 if 

j
u

j
u czzh ≥),(

*
2

*
1 , or return to the depot otherwise.  

 

The proof is similar to that of Theorem 1. We will show by induction that for all (z1,z2) ∈ Sj , fj(z1,z2) is a 

non-increasing function; that is ),(),( 212211 zzfzzf jj ≤++ δδ for 0, 21 ≥zz . This relationship is true for the last 

customer n, where fn(z1,z2) = cn0 is independent of (z1,z2). Hence fn(z1,z2) is non-increasing with respect to 

(z1,z2) ∈ Sn. We will now prove that similarly to the compartmentalised case, if fj+1(z1,z2) is monotonically 

non-increasing with respect to (z1,z2) ∈ Sj+1, then fj(z1,z2) is also monotonically non-increasing with respect 

to (z1,z2) ∈ Sj. 
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We will calculate the difference Hj(z1, z2) – Hj(z1+δ1, z2+δ2) by subtracting the terms that correspond to the 

same nine regions of Figures 6.7 and 6.8 for the first and second term of the difference respectively. 

 

Hj(z1, z2) – Hj(z1+δ1, z2+δ2) =          (6.18) 
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We can distinguish three types of terms in Eq.(6.18). The first type includes the first term. Considering this 

term we have: 
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Since fj+1(z1, z2) is monotonically non-increasing, this term is non-negative.  

 

term 7 

term 6 

term 9 

term 8 
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The second type of terms includes the third, sixth, seventh, eighth and nineth terms of Eq.(6.18). Considering 

the third term we have:   

 

),( 21
2 zzH
b
j  - )δz ,δz( 2211

'1 ++b
jH =         (6.18.2) 

∑ ∑
<+ ≤

++
≤≤−

+ 







−−−+=

1
111 2

2
2

1

1
1

: :

211110,1 ),()),((min2
k k

k

zk zk

j
k

j
Qz

j kkpQzfc

ξδ ξ θξ
θξθ  

∑ ∑
<+ ≤

++
≤≤+−

+











−+−−+−

1
111 2

2
2

1

11
1

: :

211111
)(

0,1 ),(])],([[min2
k k

k

zk zk

j
k

j
Qz

j kkpQzfc

ξδ ξ θδξ
θδξθ = 

[ ]∑ ∑
<+ ≤

++
≤≤+−

+
≤≤− 











−+−−−−−−=

1
111 2

2
2

1

11
1

1

1
1

: :

211111
)(

11 ),()],([min]),([min
k k

kk

zk zk

j
k

j
Qz

k
j

Qz
kkpQzfQzf

ξδ ξ θδξθξ
θδξθθξθ  

 

Let )( 11
' 1 zz

k −−= ξθ  and θ−=Qz 2
' .  

Then ),(]),([ 2
'

1
'

111
1 zzfQzf j
k

j ++ =−−− θξθ  and [ ] ),()],([ 2
'

11
'

1111
1 zzfQzf j
k

j δθδξθ +=−+−− ++ . 

 

Since ),( 2
'

1
'

1 zzf j+ is monotonically non-increasing, then ),( 2
'

1
'

1 zzf j+ ≥ ),( 2
'

11
'

1 zzf j δ++ . Furthermore, by 

examining the minimization boundaries Qz
k ≤≤− θξ 1
1  and Qz

k ≤≤+− θδξ )11(1  it is clear that the first is a 

subset of the second.  

 

Thus:  

]),([min]),([min

]),([min]),([min

]),([]),([

),(),(

11111

11111

11111

2
'

11
'

12
'

1
'

1

1

11
1

1

1
1

1

1
1

1

1
1

11

θδξθθξθ

θδξθθξθ

θδξθθξθ

δ

θδξθξ

θξθξ

−−−−≥−−−⇔

⇔−−−−≥−−−⇔

⇔−−−−≥−−−⇔

⇔+≥

+
≤≤−−

+
≤≤−

+
≤≤−

+
≤≤−

++

++

QzfQzf

QzfQzf

QzfQzf

zzfzzf

k
j

Qz

k
j

Qz

k
j

Qz

k
j

Qz

k
j

k
j

jj

kk

kk

 

 

Thus, ),( 21
2 zzH
b
j  - )δz ,δz( 2211

'1 ++b
jH ≥ 0. Similarly we can show that the differences corresponding to the 

sixth, seventh, eighth and nineth terms are also non-negative. 
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The third type of terms includes the second, fourth, and fifth terms of Eq.(6.18). Considering the second term 

we have: 
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If the following holds, then the above term is non-negative: 
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The first inequality holds since fj+1 is non-decreasing (and 1
1 z
k >ξ ) and the second since the limits of θ are 

narrower in the last term. Thus, the inequality of Eq.(6.18.4) holds, and the difference of Eq.(6.18.3) is non-

negative. Similarly we can show that the difference corresponding to fourth and fifth terms are also non-

negative.  

 

Assembling all the terms mentioned above we can clearly see that Hj(z1, z2) – Hj(z1+δ1, z2+δ2)≥ 0 and hence, 

Hj(z1, z2) is a monotonically non-increasing function similarly to the respective equation in the 

compartmentalized load case. Note now that part (b) ),(' 21 zzH j  of Eq. (6.10) is independent of 21 , zz  and 

thus a constant jj HzzH '),(' 21 =  in the 21 , zz  space. Therefore { }),('),,(min),( 212121 zzHzzHzzf jjj =  is a 

non-increasing function.  
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Furthermore, the intersection ),( 21 zzH j ∩ jH '  can in general be described by a function of the form 

czzh j =),( 21 . This is more clearly shown in Figure 6.24. Every (z1,z2) combination that lies within the 

highlighted area (red points), jj czzh <),( 21 , corresponds to a depot return before visiting customer j+1. For 

(z1,z2) combinations that lie outside the highlighted area (green points) jj czzh ≥),( 21 , the vehicle should 

proceed to the next customer.  

 

This concludes the proof of Theorem 2, which, similarly to Theorem 1, provides the optimal routing policy; 

i.e. the policy that if followed by the vehicle, we will obtain the minimum expected value of the travel cost. 

 

 

6.3.3 Solution Algorithm 

 

Similarly to the compartmentalized multiple product case, and based on the formulation presented in Section 

6.3.1, we developed an appropriate algorithm that uses Dynamic Programming to derive the optimal solution 

of the unified load problem in a reasonable amount of time. Consider the 5-customer network of Figure 6.23. 

The total vehicle capacity (for both products) is 10=Q  units; the demand i

jξ  for each product i (i = 1,2) per 

customer j (j = 1, …, 5) is given in Appendix D, and the distances between the nodes cij are given in Figure 

6.23. 

 

 

 

Figure 6.23. 5-customer network for the unified load case. 
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The problem is solved using the dynamic programming algorithm presented in Section 6.3.1. Let ),( 21 zz  be 

the remaining quantities in the vehicle after customer j has been served. Let ),( 21 zzf j  and ),( 21 zzx j  be the 

minimum expected cost and the corresponding decision after customer }5 ,4 ,3 ,2 ,1{∈j  has been served. 

Clearly, 1),( ,18),( 215215 == zzxzzf  for z1, z2 ∈{0,…,10}, z1+z2 ≤ 10.  

 

In Tables 6.6-6.10 we provide the results for nodes 0, 1, 2, 3, 4. In these Tables, ),( 21 zz  represents the 

quantity carried by the vehicle after customer j has been served; each cell includes two values: The first is the 

value of ),( 21 zzx j  and the second is the value of ),( 21 zzf j . 

 

 

Table 6.6. Results obtained for node 4. 

 

 

        z1           

                         

    z2      

0 1 2 3 4 5 6 7 8 9 10 

0 1; 41,1 1; 41,1 1; 41,1 1; 41,1 1; 41,1 1; 41,1 1; 41,1 1; 41,1 1; 41,1 1; 41,1 1; 41,1 

1 1; 41,1 1; 41,1 1; 41,1 1; 41,1 1; 41,1 1; 41,1 1; 41,1 1; 41,1 1; 41,1 1; 41,1 - 

2 1; 41,1 1; 41,1 1; 41,1 1; 41,1 1; 41,1 1; 41,1 1; 41,1 1; 41,1 1; 41,1 - - 

3 1; 41,1 1; 41,1 1; 41,1 1; 41,1 1; 41,1 1; 41,1 1; 41,1 1; 41,1 - - - 

4 1; 41,1 1; 41,1 0; 35,8 0; 35,6 0; 35,5 0; 35,3 0; 35,1 - - - - 

5 1; 41,1 1; 41,1 0; 35,7 0; 35,5 0; 35,3 0; 35,1 - - - - - 

6 1; 41,1 1; 41,1 0; 35,6 0; 35,4 0; 35,1 - - - - - - 

7 1; 41,1 1; 41,1 0; 35,5 0; 35,2 - - - - - - - 

8 1; 41,1 1; 41,1 0; 35,4 - - - - - - - - 

9 1; 41,1 1; 41,1 - - - - - - - - - 

10 1; 41,1 - - - - - - - - - - 
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Table 6.7. Results obtained for node 3. 

 

 

         

     z1           

                         

    z2     

0 1 2 3 4 5 6 7 8 9 10 

0 1; 44,6 0; 44,5 0; 44,4 0; 44,4 0; 44,4 0; 44,3 0; 44,3 0; 44,3 0; 44,3 0; 44,3 0; 44,3 

1 1; 44,6 0; 43,1 0; 43,0 0; 42,8 0; 42,7 0; 42,7 0; 42,7 0; 42,7 0; 42,7 0; 42,7 - 

2 0; 44,5 0; 43,1 0; 42,5 0; 42,3 0; 42,2 0; 42,2 0; 42,2 0; 42,2 0; 42,2 - - 

3 0; 44,5 0; 43,0 0; 42,5 0; 42,2 0; 42,2 0; 42,2 0; 42,2 0; 42,2 - - - 

4 0; 44,5 0; 43,0 0; 42,5 0; 42,2 0; 42,1 0; 42,1 0; 42,1 - - - - 

5 0; 44,5 0; 43,0 0; 42,5 0; 39,0 0; 38,8 0; 38,1 - - - - - 

6 0; 44,5 0; 43,0 0; 42,4 0; 38,9 0; 37,6 - - - - - - 

7 0; 44,5 0; 43,0 0; 42,4 0; 38,7 - - - - - - - 

8 0; 44,5 0; 43,0 0; 42,4 - - - - - - - - 

9 0; 44,5 0; 43,0 - - - - - - - - - 

10 0; 44,5 - - - - - - - - - - 

 

 
 

 

Table 6.8. Results obtained for node 2. 

 

 

        z1    

                         

    z2      

0 1 2 3 4 5 6 7 8 9 10 

0 1; 52,4 1; 52,4 1; 52,4 1; 52,4 1; 52,4 1; 52,4 1; 52,4 1; 52,4 1; 52,4 1; 52,4 1; 52,4 

1 1; 52,4 1; 52,4 0; 52,3 0; 52,2 0; 52,2 0; 52,2 0; 52,2 0; 52,1 0; 52,1 0; 52,1 - 

2 1; 52,4 0; 50,1 0; 50,0 0; 49,9 0; 49,9 0; 49,8 0; 49,8 0; 49,8 0; 49,8 - - 

3 0; 50,1 0; 49,9 0; 49,3 0; 49,3 0; 49,2 0; 49,1 0; 49,1 0; 49,1 - - - 

4 0; 50,0 0; 48,3 0; 47,7 0; 47,3 0; 47,2 0; 47,1 0; 47,0 - - - - 

5 0; 50,0 0; 48,3 0; 46,7 0; 46,2 0; 45,9 0; 45,8 - - - - - 

6 0; 50,0 0; 48,2 0; 46,6 0; 45,9 0; 45,5 - - - - - - 

7 0; 50,0 0; 48,2 0; 46,6 0; 45,8 - - - - - - - 

8 0; 50,0 0; 48,2 0; 46,6 - - - - - - - - 

9 0; 50,0 0; 48,2 - - - - - - - - - 

10 0; 50,0 - - - - - - - - - - 
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Table 6.9. Results obtained for node 1. 

 

 

        z1           

                         

    z2      

0 1 2 3 4 5 6 7 8 9 10 

0 1; 67,6 1; 67,6 1; 67,6 1; 67,6 1; 67,6 1; 67,6 1; 67,6 1; 67,6 1; 67,6 1; 67,6 1; 67,6 

1 1; 67,6 1; 67,6 1; 67,6 1; 67,6 1; 67,6 1; 67,6 1; 67,6 1; 67,6 1; 67,6 1; 67,6 - 

2 1; 67,6 1; 67,6 1; 67,6 1; 67,6 1; 67,6 1; 67,6 1; 67,6 1; 67,6 1; 67,6 - - 

3 1; 67,6 1; 67,6 1; 67,6 1; 67,6 1; 67,6 1; 67,6 1; 67,6 1; 67,6 - - - 

4 1; 67,6 1; 67,6 1; 67,6 0; 67,4 0; 67,2 0; 67,1 0; 67,0 - - - - 

5 1; 67,6 1; 67,6 0; 67,3 0; 66,5 0; 66,3 0; 66,1 - - - - - 

6 1; 67,6 1; 67,6 0; 66,3 0; 65,4 0; 64,6 - - - - - - 

7 1; 67,6 1; 67,6 0; 66,3 0; 64,7 - - - - - - - 

8 1; 67,6 1; 67,6 0; 66,2 - - - - - - - - 

9 1; 67,6 1; 67,6 - - - - - - - - - 

10 1; 67,6 - - - - - - - - - - 

 
 

 

 

Table 6.10. Results obtained for node 0 (depot). 

 

 

        z1           

                         

    z2      

0 1 2 3 4 5 6 7 8 9 10 

0 
109,5 109 108,7 108,7 108,6 108,6 108,6 108,6 108,5 108,5 108,5 

1 
109,2 107,8 107,3 107,2 107,2 107,1 107 107 106,9 106,9 - 

2 
108,3 106,6 101,1 101,1 101 100,9 100,8 100,7 100,6 - - 

3 
107,6 88,5 83,1 82,9 82,8 82,7 82,6 82,5 - - - 

4 
107,5 88,5 83 82,8 82,7 82,5 82,3 - - - - 

5 
107,5 88,4 82,9 82,7 82,5 82,4 - - - - - 

6 
107,5 88,4 82,8 82,6 82,5 - - - - - - 

7 
107,4 88,3 82,7 82,5 - - - - - - - 

8 
107,4 88,3 82,6 - - - - - - - - 

9 
107,4 88,2 - - - - - - - - - 

10 
107,4 - - - - - - - - - - 

 

 

 

H1 > H′1 

H1 ≤  H′1 
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Therefore the minimum expected total cost is equal to 82,4 for z1 = 5 and  z2 = 5. 

 

Figure 6.24 illustrates the threshold function czzh =),( 211  as obtained from the results of Table 6.9. It is 

clearly seen from this table that H′1 = 67,6. For all (z1,z2) pairs with H1(z1,z2) ≤ H′1 the vehicle should 

proceed to the next customer directly.  

Customer 1
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Z
2
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Figure 6.24. The corresponding load combinations after serving customer 1. 

 

The performance of the algorithm was also found to be within acceptable levels. As an indication, for a test-

problem of 10 customer points, 2 products and total vehicle capacity of 10 units, the algorithm derived the 

minimum expected cost, as well as the threshold curves per customer within 1420 seconds (=23,6 min). The 

number of combinations examined for each of the customer points 2-9 were approximately 8600. One needs 

to take into consideration that this problem is significantly more complex than its compartmentalized 

counterpart (approximately 1330 combinations per customer) due to the additional minimization steps 

required to identify the optimal θ and s values for each customer point. The experiments were run on a PC 

equipped with Intel Pentium IV, at 2.4 GHz and 512 MB of RAM. 

 

z2 

z1 
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In order to further assess the performance of the algorithm, a large number of problem test cases were 

created and run (see Figure 6.25). Three different problem test cases are plotted this figure. The first test case 

(10,000 randomly generated problems) concerns a vehicle with a total capacity (sum for both products) Q = 

5 and is shown in green color. Each one of the 10 points of the curve is the average of 1,000 randomly 

generated problems. The second test case (again 10,000 randomly generated problems) concerns a vehicle 

with a total capacity Q = 10 and is shown in blue color. The third test case (10,000 randomly generated 

problems) included a vehicle with a total capacity Q = 15, and is shown in red color. The demand 

distributions were generated randomly (uniform distributions).  
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Figure 6.25. Performance results of the algorithm for the unified load case. 

 

The trends obtained are similar to the ones corresponding to the compartmentalized case. For example, from 

Figure 6.25 it can be clearly seen that for a given number of customers, the increase of the vehicle capacity 

resulted in an almost exponential increase in the computation time of the algorithm (note that the scale of the 

y-axis of the graph is on a logarithmic scale).  

 

On the other hand, if the capacity of the vehicle is kept constant, and the number of customers is increased, 

the computation time also increases. In order to analyze this trend further, ten different test cases were run 
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with Q=10, ranging from five to fifty customer points (1000 randomly generated problems for each customer 

set) as shown in Figure 6.26. Each point in this figure represents the average time for the 1000 problems of 

the particular problem set. Figure 6.26 indicates that the increase in the computation time is linear with the 

number of customers. 
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Figure 6.26. Performance results with up to 50 customer points. 

 

For the 50-customer instance, the algorithm took approximately 6220 seconds (= 104 minutes) in order to 

obtain the solution of one problem. 

 

6.4 Conclusions 

 

This chapter focused on the multiple products extension of the Stochastic version of the Vehicle Routing 

with Depot Returns Problem (SVRDRP). This extension comprised of two cases; the compartmentalized and 

the unified load case. The objective of both these cases was to serve all customers with a single vehicle and 

minimize the expected value of the travel cost. 
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For both cases we presented the characteristics of each problem, a method to determine the minimum 

expected cost, and the theoretical results that permit us to determine the optimal decision after serving each 

customer. Both cases were formulated through dynamic programming, and for both it was proven that there 

exists an appropriate threshold function for each customer that distinguishes two regions in the space of 

possible loads after serving the customer: the region of loads for which the optimal decision (after serving 

the customer) is to return to the depot, and the region for which the optimal decision is to continue to the 

next customer. Both cases were formulated and solved for two products, but the results can be extended to n 

products (see Appendix B for the 3-product formulation of the compartmentalized case).  

 

For both cases, through the execution of a large number of randomly generated problems it was found that 

the increase of the vehicle capacity results in an almost exponential increase in the computational time of the 

algorithm. On the other hand, if the capacity of the vehicle is kept constant, and the number of customers is 

increased, the computational time increases linearly with the number of customers. The unified load case 

proved to be significantly more complex than the compartmentalized load one, as expected. This is mainly 

due to the increased complexity of the formulation, which includes additional minimization steps in order to 

identify the replenishment stock for each customer point.  
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Chapter 7 
Pickup and Delivery under Random Demand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.1 Introduction 

 

In this Chapter we examine the Pickup and Delivery case of the VRDRP under random demand. The 

characteristics and the mathematical formulation of the problem are described first. Subsequently, a new 

algorithm that solves this problem to optimality is presented. Finally, the performance of the algorithm is 

analyzed by solving a large number of sample problems.   
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7.2 The Pickup and Delivery SVRDRP 

 

This case addresses an existing business model, according to which a vehicle can both sell (deliver) products 

but also collect (pickup) items from its customer base. An example is the distribution of paper-rolls for 

newspapers, in which, the paper-rolls are delivered to the customer on pallets and empty pallets are collected 

from the customer to be returned to the depot. 

 

The demand of each customer (for either delivery or pickup) is again not known in advance, and it is 

revealed when the vehicle arrives at the customer site. However, as before, the sequence of serving the 

customers is predefined and the distances among all points in the network (depot and customer sites) are 

known. Upon completion of service at customer site j, the vehicle’s driver has to make the same decision as 

the one described in Sections 5.2, 6.2 and 6.3, i.e. proceed to customer j+1, or return to the depot in order to 

empty the items that were picked up, refill the vehicle, and resume the route to serve customer j+1. An 

additional decision should be made concerning the quantity to be loaded to the vehicle each time the vehicle 

returns to the depot. This is because unnecessarily high stock levels may prevent the collection of returned 

items, therefore causing additional depot returns and lower customer service. 

 

It is noted that the vehicle may have to visit a customer twice (but not more), if it cannot fully meet the 

demand of this customer during the first visit (for either delivery or pickup). It is assumed that service at a 

customer site and loading/unloading at the depot are performed instantly upon arrival of the vehicle. As in 

the multiple product case, the objective of the problem is to serve all customers and minimize travel cost in 

an expected value sense. 

 

 

7.3 Dynamic Programming Formulation 

 

Let z represent the product quantity and b the quantity of the returned items on board after serving customer 

j. Let jξ  be the stochastic product demand (to be delivered to) customer } , ,1{ nj K∈  and pjk  = P( jξ  = 
kξ ) 

its probability mass function. Also, let jρ  be the stochastic demand for the items to be picked up from 

customer } , ,1{ nj K∈  and πjm  = P( jρ = mρ ) its probability mass function. Note that jξ and jρ are 



University of the Aegean                              Department of Financial and Management Engineering 

       101 

independent, and neither may exceed the vehicle capacity Q. Finally let ),( bzf j denote the minimum 

expected cost from customer j onward. Note that the quantities a) of the delivered product and b) of the 

picked up (returned) items are measured using the same unit of measure, e.g. 3m or kg. 

 

The mathematical formulation for minimizing the expected value of the route cost is given below: 

 

min),( =bzf j            (7.1) 
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Note that the second part of Eq. (7.1) does not contain a fifth term, since ρ
m
 cannot exceed the vehicle 

capacity Q. 

 

In this case there are additional issues to be considered. First, upon visiting the depot, an additional decision 

needs to be made regarding the quantity of stock to be loaded onto the vehicle. This is due to the fact that it 

may not prove cost effective to load the vehicle to its full capacity, as there needs to be some space available 
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in order to be able to accommodate the returned items as well without causing unnecessary depot returns.  

Let θ be the product quantity to be loaded to the vehicle during its (first) depot return. Then the space left for 

the product to be picked up will be Q-θ.  If the depot return comes after serving client j+1 (i.e. the first part 

of Eq. (7.1)) then the quantity of product loaded onto the vehicle can be such that the demand of client j+1 

can be fully satisfied (either for delivery product or for returned items). However if the depot return comes 

before visiting client j+1 (i.e. second part of Eq. (7.1)) then another (subsequent) return to the depot will be 

necessary in case the product quantity θ loaded onto the vehicle (or space Q-θ left for the items to be picked 

up) is not adequate to fully satisfy the client’s demand. During the second return, the decision to load stock s 

of the product to be delivered is an informed one, since the demand of customer j+1 is fully known.  

 

The first part of the minimization equation consists of four distinct terms. Each term corresponds to one of 

the four areas shown in Figure 7.1. In this Figure the x-axis represents the stock on board, and the y-axis 

represents the space available in the vehicle after delivery has occurred. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. The solution space per customer point. 

 

The first term of Eq. (7.1) corresponds to Area A and represents the cost incurred if the vehicle proceeds to 

the next customer directly and a) the stock z of the product is sufficient to satisfy the demand (
kξ ≤ z ), and 
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b) the space left for the items to be picked up is also adequate ( mρ + b ≤ Q - (z - kξ )) (Area A in Figure 7.1).  

This case is shown in Figure 7.2. 

 

               

    

 

  

Figure 7.2. Both the stock and the vehicle space are sufficient to satisfy the demand 
kξ and 

mρ . 

 

The second term of Eq. (7.1) corresponds to Area C of Figure 7.1 and represents the cost incurred if the 

vehicle goes to the next customer directly and the stock on board is not sufficient to fully satisfy the demand 

of the next customer (
kξ > z ), while the space left for the items to be picked up is sufficient to satisfy the 

demand for the returned items ( mρ + b ≤ Q). This case is represented in Figure 7.3 below. 

 

 

          

          

          

 

 

 

 

Figure 7.3. The stock is not sufficient but the vehicle space is. 

 

The third term of Eq. (7.1) corresponds to Area B of Figure 7.1 and represents the cost incurred if the vehicle 

goes to the next customer directly and the space left for the items to be picked up is not sufficient to fully 

satisfy the demand of the next customer ( mρ + b > Q - (z - kξ )), while the product quantity on board is 

sufficient to satisfy the corresponding demand of the next customer (
kξ ≤ z ). This case is schematically 

represented in Figure 7.4. 
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Figure 7.4. The stock is sufficient but the vehicle space is not. 

 

The fourth term of Eq. (7.1) corresponds to Area D of Fig.(7.1) and represents the cost incurred if the vehicle 

goes to the next customer directly and both the product quantity on board as well as the space left for the 

items to be picked up are not sufficient to fully satisfy the demand of the next customer (
kξ > z , 

mρ + b > 

Q). This case is shown in Figure 7.5. 

 

          

          

          

 

 

 

 

Figure 7.5. Neither the stock nor the vehicle space are sufficient. 

 

The second part of the minimization equation consists of three terms and represents all possible cases that 

may occur when a proactive depot return is performed. In this case the values of z and b do not affect the 

result. Furthermore, since kξ and 
mρ are not known, the quantity θ (and the space available Q-θ) loaded at 

the depot may not be sufficient to satisfy the demand of customer j+1. Thus, a second, subsequent visit to the 

depot may be necessary. The first term of the second part represents the case in which the vehicle visits the 
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depot, loads a quantity θ of the product (thus the vehicle space left is Q-θ), proceeds to customer j+1 and can 

fully satisfy its demand for both delivery ( kξ ≤ θ )  and pickup ( mρ ≤ Q-θ ). This is shown in Figure 7.6. 

           

               (θ-
kξ ), ρm  

 

 

              

            

          

 

Figure 7.6. The case in which θ ≥ kξ and Q- θ ≥
mρ . 

 

The second term represents the case in which after visiting customer j+1 the vehicle cannot satisfy the 

customer’s demand for delivery ( kξ > θ ). In this case, the vehicle will deliver its entire load θ and pickup the 

entire quantity 
mρ (since 

mρ ≤  Q and the vehicle is empty after delivery). Subsequently, it will return to 

the depot once more, and make an additional, informed this time, decision for load quantity s for the product 

to be delivered in order to guarantee that it will fully satisfy the demand of customer j+1. This case is shown 

in Figure 7.7. 
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Figure 7.7. The case that θ < 
kξ . 
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The third term represents the case in which after visiting customer j+1 the vehicle cannot satisfy the 

customer’s demand for the product to be picked up (
mρ > Q-(θ-ξk) ). The course of action here is analogous 

to the one discussed previously. This case is shown in Figure 7.8. 

 

       

                 s, 
mρ - [Q – (θ - 

kξ )]  

 

 

              

            

          

 

 

 

 

Figure 7.8. The case that 
mρ > Q-θ. 

 

Note that a fourth term is not present in this part of the equation, since when θ < ξ
k
 the vehicle delivers its 

entire load θ and thus, can pickup the entire quantity ρ
m
 ≤ Q. 

 

 

7.4 Solution Algorithm 

 

Similarly to the multiple product case presented in Chapter 6, and based on the formulation presented in 

Section 7.3, we developed an appropriate algorithm that uses Dynamic Programming to derive the optimal 

solution of the pickup and delivery problem in a reasonable amount of time.  

 

The solution algorithm proceeds as follows: For each combination z and b and for each step of the algorithm, 

both terms of Eq. (7.1) are calculated and the one with the smallest value is selected. For calculating each 

term of Eq. (7.1) all allowable values of θ and s are tested and the appropriate minima are selected.  
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As an illustrative example, consider the 5-customer network of Figure 7.9. The vehicle capacity is 5=Q ; the 

demand for delivery kξ  and pickup mρ  for each customer j (j = 1,…, 5) are given in Appendix E, and the 

distances between the nodes cij are given in Figure 7.9. 

 

 

 

Figure 7.9. 5-customer network for pickup and delivery extension. 

 

 

The problem is solved using the dynamic programming algorithm presented in Section 7.3. Let ),( bzf j  and 

),( bzx j  be the minimum total cost and the corresponding decision after customer }5 ,4 ,3 ,2 ,1{∈j  has been 

served. The remaining quantity in the vehicle is ),( bz . Clearly, 1),( ,18),( 555555 == bzxbzf  for .5,0 ≤≤ bz   

 

In Tables 7.1-7.4 we provide the results for nodes 1, 2, 3, 4. In these Tables, the values z and b represent the 

quantities carried by the vehicle for the delivery product and the returned item after customer j has been 

served; each cell includes two values: The first is the value of ),( bzx j  and the second is the value of ),( bzf j . 

Furthermore, if we call ),( bzH j  the first part of Eq. (7.1) and ),(' bzH j  the second part of this Equation, the 

results of Tables 7.1 – 7.4 indicate which term is the minimum for each combination ),( bz . 
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Table 7.1. Results obtained for node 4. 

 

 

        z4          

                         

    b4      

 

0 1 2 3 4 5 

0 1; 44,18 1; 44,18 1; 44,18 1; 44,18 0; 35,59 0; 38,18 

1 1; 44,18 1; 44,18 1; 44,18 1; 44,18 0; 38,54  - 

2 1; 44,18 1; 44,18 1; 44,18 1; 44,18 -  -  

3 1; 44,18 1; 44,18 1; 44,18 -  -  -  

4 1; 44,18 1; 44,18 -  -  -  -  

5 1; 44,18  -  -  -  - -  

 
 

 

 

Table 7.2. Results obtained for node 3. 

 

 

        z3          

                         

    b3      

 

0 1 2 3 4 5 

0 0; 46,23 0; 45,84 0; 45,49 0; 45,47 0; 46,15 0; 45,27 

1 0; 46,25 0; 45,86 0; 45,70 0; 46,25 0; 47,59  - 

2 0; 46,49 0; 46,10 0; 46,49 0; 47,67  -  - 

3 0; 47,33 0; 46,96 0; 47,94  -  -  - 

4 0; 48,72 0; 48,43  -  -  -  - 

5 0; 50,83  -  -  -  -  - 

 
 

 

 

 

Table 7.3. Results obtained for node 2. 

 

 

        z2          

                         

    b2           

 

0 1 2 3 4 5 

0 1; 56,38 0; 56,21 0; 55,83 0; 54,43 0; 49,51 0; 49,39 

1 1; 56,38 0; 56,23 0; 55,88 0; 54,61 0; 50,15  - 

2 1; 56,38 0; 56,28 0; 56,00 0; 55,00  -  - 

3 1; 56,38 0; 56,35 0; 56,22  -  -  - 

4 1; 56,38 1; 56,38  -  -  -  - 

5 1; 56,38  -  -  -  -  - 

H4 > H′4 

H′3 = 51,23 – no depot return 

H3 < H′3 

H2 > H′2 
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Table 7.4. Results obtained for node 1. 

 

 

        z1          

                         

    b1           

 

0 1 2 3 4 5 

0 1; 75,98 1; 75,98 0; 75,80 0; 73,90 0; 73,56 0; 73,48 

1 1; 75,98 1; 75,98 0; 74,96 0; 74,48 0; 74,82  - 

2 1; 75,98 1; 75,98 0; 75,51 0; 75,60  -  - 

3 1; 75,98 1; 75,98 1; 75,98  -  -  - 

4 1; 75,98 1; 75,98  -  -  -  - 

5 1; 75,98  -  -  -  -  - 

 
 

Table 7.5. Results obtained for node 0 (depot). 

 

        z0          

                         

    b0          

0 

 

1 

 

2 

 

3 

 

4 

 

5 

0 116,43 113,87 111,32 92,73 91,10 90,51 

 

 

Therefore the minimum expected total cost is equal to 91,10. For these tables, it is clear that we cannot draw 

a conclusion regarding the monotonicity of the function ),( bzf j  similar to the conclusion drawn for the cases 

of Chapter 6. For example, the first row of Table 7.1 indicates that there is no definite (decreasing) trend as 

the value of z  increases for 0=b . Also, in Table 7.4, for 2=z , there is no definite (decreasing) trend 

regarding the value of b .   

 

Figure 7.10 illustrates the area 333 ),( Sbz ∈  of customer-3 in a richer example for the same method where 

Q=10. As before, the algorithm calculates the value of the first part of Eq. (7.1) for all the ),( bz combinations. 

For each combination, the value obtained is compared with the constant value of the second part.  If the 

value of the first part is found to be less than the value of the second part, it would mean that for this 

particular ),( bz combination the vehicle should proceed to the next customer directly (values shown in Figure 

7.10 as green square points). If the value of the first part is found to be greater than the value of the second 

part, it would mean that for this particular ),( bz combination the vehicle should proceed to the next customer 

via the depot (values shown in Figure 7.10 as red square points). 

H1 > H′1 
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Figure 7.10. The combined threshold graph for pickup and delivery for Client 3. 

 

From this figure it is clear that the function ),(3 bzf  is not non-increasing, at least with respect to z3. The 

shape of the ),( 33 bz  area for which the vehicle should continue to the next client is reasonable. Let’s 

consider the case for which b3 = 2; then for z3 = 0 or 1 the vehicle does not carry enough product to supply 

the next customer, although it has adequate space to carry returned items. Due to the limited stock on board 

the vehicle should return to the depot to reload. As the stock rises { }5,...,23 ∈z  there is no need to refill; in 

addition there is space left to carry returned items. Thus there is no need for a depot return. For values of 

63 ≥z  there is not enough space for returned items, and thus the vehicle should return to the depot to unload. 

Let’s now consider the case for which z3 = 4. For low values of { }3,...,03 ∈b  both the product stock and the 

space left on the vehicle are adequate to serve the next customer(s) and no depot return is necessary. 

However, for values of 43 ≥b  there is not adequate space left, and thus the vehicle should return to the depot 

to unload. 

 

The performance of the algorithm was also found to be within acceptable levels. For a test-problem of 10 

customer points, 1 delivery product, 1 pickup item, and total vehicle capacity of 10 units, the algorithm 

H1 > H′1 
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derived the minimum expected cost, as well as the individual combined threshold values per customer point, 

within 338 seconds (=5,6 min). The experiments were run on a PC equipped with Intel Pentium IV, at 2.4 

GHz, and 512 MB of RAM. 

 

In order to further assess the performance of the algorithm, a large number of other problem test cases were 

generated and run. Three different problem test cases are plotted in Figure 7.11. Each case represents 10,000 

randomly generated problems in total (1000 problems per client). Each point represents the number on 

clients in the particular example, ranging from 5 to 15 clients. The first test case concerns a vehicle with a 

total capacity (for both the pickup and delivery products) Q = 5 and is shown in green color. The second test 

case concerns a vehicle with a total capacity Q = 10 and is shown in blue color. The third test case concerns a 

vehicle with a total capacity Q = 15 and is shown in red color. The demand distributions for each problem 

were generated randomly (with z mean values close to 50% of the vehicle capacity and b mean values close 

to 30% of the vehicle capacity).  
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Figure 7.11. Performance results of the algorithm for the pickup and delivery case. 
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From Figure 7.11 it can be clearly seen that for a given number of customers, the increase of the vehicle 

capacity resulted in an almost exponential increase in the computation time of the algorithm (note that the 

scale of the y-axis of the graph is on a logarithmic scale). On the other hand, if the capacity of the vehicle is 

kept constant, and the number of customers is increased, the computation time also increases significantly. In 

order to analyze this trend further, ten different test cases were run with Q = 10, for five to fifty customer 

points and the results are shown in Figure 7.12. Each point in this figure represents the average time for the 

1000 problems. The figure indicates that the increase in the computation time is linear with the number of 

customers.  
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Figure 7.12. Performance results with up to 50 customer points. 

 

For the 50-customer instance the algorithm took approximately 1766 seconds (= 29 min) in order to obtain 

the solution of the problem.  
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7.5 Conclusions 

 

In this chapter we presented the Pickup and Delivery case of the Stochastic Vehicle Routing with Depot 

Returns for Stock Replenishment Problem (SVRDRP). In this case the vehicle not only delivers products to 

the customers but it also picks up returned items from each customer (e.g. damaged goods, or empty 

packaging). The objective is to serve all customers by minimizing travel cost under random customer 

demand.  

 

The characteristics of the problem were presented, together with a new method to determine the minimum 

expected cost, as well as the optimal decision after serving each customer. In this case there are additional 

issues to be considered. First, upon visiting the depot, an additional decision needs to be made regarding the 

quantity of stock to be loaded onto the vehicle. This is due to the fact that it may not prove cost effective to 

load the vehicle to its full capacity, as there needs to be some space available in order to be able to 

accommodate the returned items as well without causing unnecessary depot returns.  If the depot return 

comes after serving client j+1 then the quantity of product loaded onto the vehicle can be such that the 

demand of client j+1 is fully satisfied (either for delivery product or for returned items). However, if the 

depot return comes before visiting client j+1 then another (subsequent) return to the depot will be necessary 

in case the product quantity loaded onto the vehicle (or space left for the items to be picked up) is not 

adequate to fully satisfy the client’s demand. During the second return, the decision to load a specific 

quantity of the product to be delivered is an informed one, since the demand of the client j+1 is fully known.  

 

In addition, computational results have shown that a theorem analogous to Theorems 1 and 2 of Chapter 6 

does not hold for the pickup and delivery case of the SVRDRP. This is due to the different characteristics of 

this case, as there is a direct relation between the stock levels of the delivery product and the space available 

for the pickup items (as the first declines the second rises).  

 

By solving a large number of randomly generated problems, it was found that the increase of the vehicle 

capacity results in an almost exponential increase in the computational time of the algorithm. On the other 

hand, if the capacity of the vehicle is kept constant, and the number of customers is increased, the 

computation time increases linearly by the number of customers.  
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Chapter 8 
        Conclusions and Future Research Directions  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.1 Conclusions 

 

In this work we presented, modeled, solved, and analyzed several important cases of the single Vehicle 

Routing with Depot Returns Problem (VRDRP). We also highlighted the practical importance of this 

problem in the Ex-van sales and other cases, including material handling system routing.  



University of the Aegean                              Department of Financial and Management Engineering 

       115 

The objective of the Vehicle Routing with Depot Returns Problem (VRDRP) is to minimize cost (distance) 

while serving all customers in a predefined sequence with a single vehicle. The analysis of the problem 

showed that its complexity increases exponentially with the number of customers. In addition, a dynamic 

programming algorithm (DPA) inspired by the work of Yang et al. (2000) and Manfrin et al. (2004) was 

developed to solve the problem to optimality in efficient computational times. The VRDRP formed the 

foundation of this dissertation and was gradually enhanced in the following chapters as shown in Figure 8.1 

below. 

 

Figure 8.1. The enhancements of the VRDRP. 

 

We enhanced the deterministic VRDRP by studying two significant variations of the problem: (i) The case of 

multiple-product deliveries in which each product is stored in its own compartment in the vehicle, and (ii) 

the case of multiple-product deliveries in which all products are stored together in the vehicle’s single 

compartment. The mathematical models, as well as new efficient algorithms that solve these problems to 

optimality were developed and presented. For the case of compartmentalized load (Problem 1) 3000 

problems were created and solved. The number of customers in these problems ranged from 5 to 50, while 

the number of products was equal to 2, 3 and 4. For the case of unified load (Problem 2) we generated 2000 

problems following the procedure described above. In this case the number of customers ranged from 5 to 

1000, while the number of products ranged from 2 to 5. Based on the experimental results of the multiple-
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product problem, it has been demonstrated that the complexity of the compartmentalized case is significantly 

higher from that of the unified load case. Furthermore, the computational time for the compartmentalized 

case increases with a rate less than exponential with respect to the number of customers, while for the unified 

load case it increases linearly. In addition, for the compartmentalized case, the computational time increases 

exponentially with respect to the number of product types. This is due to the increase of the number of 

combinations to be examined for each additional product. 

 

In the Stochastic enhancement of the Vehicle Routing with Depot Returns Problem (SVRDRP), the customer 

demands have been assumed to be independent random variables with known distributions. The SVRDRP 

has been initially presented and solved by Yang et al. (2000). We analyzed this problem to further determine 

the effect of the variance of the demand on the minimum expected cost function. It was found that the 

expected cost of the route increases almost linearly with the standard deviation of the demand. Thus, in the 

Ex-van business case, the consistency of Sales affects the distribution costs directly. Secondly, the problem 

was analyzed in order to determine the interaction between the mean and the variance of the demand. It was 

found that this interaction is significant, and, thus, in practice the randomness affects the expected cost more 

for vehicles with lower capacity. 

 

We studied the multiple products extension of the SVRDRP. Again, we focused on two cases; The 

compartmentalized and the unified load case. For both cases we presented the characteristics of each 

problem, novel methods to determine the minimum expected cost, and the theoretical results that permit one 

to determine the optimal decision after serving each customer. Both cases were addressed using dynamic 

programming, and for both it was proven that there exists an appropriate threshold function for each 

customer that distinguishes two regions in the space of possible loads (after serving the customer): The 

region of loads for which the optimal decision is to return to the depot, and the region for which the optimal 

decision is to continue to the next customer. For both cases, through the execution of a large number of 

randomly generated problems it was concluded that the increase of the vehicle capacity results in an almost 

exponential increase in the computational time of the algorithm. On the other hand, if the capacity of the 

vehicle is kept constant, and the number of customers is increased, the computational time increases linearly 

with the number of customers. The unified load case proved to be significantly more complex than the 

compartmentalized load one, as expected. This is mainly due to the increased complexity of the formulation, 
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which includes additional minimization steps in order to identify the replenishment stock for each customer 

site.  

 

Finally, we investigated the Pickup and Delivery case of the SVRDRP. In this case the vehicle not only 

delivers products to customers but it also picks up returned items from each customer (e.g. damaged goods, 

or empty packaging). In this case there are additional issues to be considered. First, upon visiting the depot, 

an additional decision needs to be made regarding the quantity of stock to be loaded onto the vehicle. This is 

due to the fact that it may not be cost effective to load the vehicle to its full capacity, since there needs to be 

some space available to accommodate the returned items as well without causing unnecessary depot returns. 

Secondly, it was found that due to the direct relationship between the stock of the delivery product and the 

space available for the pickup items, the properties of this case are quite different from those of the multiple 

product one. The characteristics of the problem were presented, together with a novel method to determine 

the minimum expected cost. By solving a large number of randomly generated problems, it was found that in 

this case again the increase of the vehicle capacity results in an almost exponential increase in the 

computational time of the algorithm. On the other hand, if the capacity of the vehicle is kept constant and the 

number of customers is increased, the computation time increases linearly with the number of customers.  

 

This work has produced a decision support framework, which can be utilized in fixed routing operations 

(including Ex-van sales and material handling systems within a manufacturing plant) in an urban setting 

environment (it is not practical to use the above framework in intercity environments since the significantly 

larger arcs among the cities make the depot returns unfavourable). The routing approach developed in this 

work can be implemented within a Fleet Management System (as shown in Figure 8.2), which performs both 

initial routing (planning) and dynamic adjustments of the initial plan responding to disturbances of the 

environment (execution). The planning part of the system may use the proposed algorithms, based on the 

characteristics of the distribution environment, in order to develop initial optimal routes. These plans may be 

distributed to the vehicle drivers either manually (paper-based operation) or electronically (via on-board 

telematic equipment and communications through GSM/GPRS networks). In case of unexpected events 

(such as traffic congestion, unexpected delays, etc.) during the plan execution, suitable variations of the 

proposed algorithms may be employed for dynamic re-planning. 
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Figure 8.2 A typical Fleet Management System Architecture (Larsen, 1999). 

 

Thus, based on the algorithms described in this work, the operation of a wide variety of cases (deterministic 

or stochastic demand, single or multiple products, delivery or pickup & delivery) can be improved 

significantly: Ad-hoc non-optimal decisions are eliminated, minimizing total operating expenses, and 

increasing the overall productivity of the distribution fleet. 

 

8.2 Future Research Issues 

 

In this work we addressed a single vehicle operation. Typically the Ex-van business model refers to a fleet of 

vehicles (n vehicles), therefore bearing similarities to the Vehicle Routing Problem (VRP). The multiple 

vehicle case can be transformed to the single vehicle case by assigning a priori a cluster of clients to each 

vehicle (cluster-first-route-second policy). In practice, these assignments are typically made based on 

historical data and field experience, or simply based on the geographical locations of the customer sites. An 

interesting problem would be to integrate the customer assignment and the stochastic VRDRP problems is a 
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unified model that would provide globally optimal, or near-optimal, solutions. This would resemble more a 

route-first-cluster-second policy. The comparison of the two policies, the cluster-first-route-second vs. the 

route-first-cluster-second, also posses significant issues. The customer network as well as the demand 

distribution characteristics, could affect the solutions derived by each policy, and it would therefore be 

challenging to identify which policy would be more efficient over a large amount of randomly generated 

problem instances.  

 

A second enhancement of this work would be to consider customer time-windows. For example, it is 

common in the Ex-van business model for each customer (or at least for the large customers) to restrict 

delivery within pre-agreed time-windows. These windows are usually strict (also called hard time-windows) 

and if an Ex-van vehicle misses the time-window, the vehicle will not be allowed to serve the respective 

customer, missing a potentially valuable sales opportunity. The predefined sequence of our problem is 

compatible with the time-window characteristic, since spatial and temporal sequencing may be related. 

Further investigation of the hard time-window case is interesting and may have significant practical 

implications.  

 

Service levels also present an opportunity for further research work. It is common in the Ex-van business 

model to have different customers, some with a high profile (higher valued customers, with frequent, and/or 

high value orders) and some with low (with infrequent, low value orders). These customers should be treated 

differently, in a practical scenario.  In its realization, each customer may be allocated a service factor S that 

will be taken into account in the objective function. Depending on the value of S, one could give priority to 

customers with a high S over others with a low S, or even skip visiting some low-S customers in favor of 

more high profile ones. Modeling of this case may be inspired by the so-called Orienteering Problem. 

Providing optimal, or near-optimal, solution methods will be both interesting and of significant practical 

value. 
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9.1 Introduction 

 

This Chapter is dedicated to all the people mentioned in the reference list. Without their work, ideas, vision 

and ultimately indirect help, the completion of this doctoral would have been impossible. We truly hope that 

this work will also become the inspiration to take research in this particularly interesting field, another step 

further.  
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A.1 The Yang et al optimal solution 

 

According to Yang et al. (2000), in order to identify an optimal route approach for a single vehicle, it is first 

necessary to develop an efficient procedure to evaluate a particular route, that is, to find its expected cost 

under an optimal restocking policy. Upon service completion at customer j, suppose the vehicle has a 

remaining load z, and let fj(z) denote the total expected cost from node j onward. If Sj represents the set of all 

possible loads that a vehicle can have after service completion at customer j, then, fj(z) for z ∈ Sj satisfies the 

dynamic programming recursion: 

   cj,j+1 + ∑∑
>

+++
≤

++ −++++−
zk

kj
k

jj

zk

kj
k

j
kk

pQzfcbpzf

ξξ

ξξ
:

,110,1

:

,11 )](2[)(  

fj(z) = Minimum            (A.1) 

   cj,0 + c0,j+1 + ∑
=

++ −
m

k

kj
k

j pQf

1

,11 )( ξ      

with the boundary condition:  

     fn(z) = cn0   z ∈ Sn     (A.2) 

 

In Eq. (A.1) the upper term in the minimization represents the expected cost of going directly to the next 

customer, whereas the lower term represents the expected cost of the restocking action. Dynamic 

programming is used to recursively determine the optimal policy. The properties of the optimal policy are 

derived as follows.  

 

LEMMA 1. 

 

fj(z) ≤ fj(Q) + 2c0j   for all   z ∈ Sj 

Proof. From Eq. (A.1), 

   ∑
=

+++ −++≤
m

k

kj
k

jjjj pQfcczf

1

,111,00, )()( ξ      (A.3) 

 

Also because C satisfies the triangular inequality, Eq. (A.1) gives 
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 ∑
=

+++ −+≤
m

k

kj
k

jjjj pQfcQf

1

,111, )()( ξ      (A.4) 

 

Combining Eq. (A.3) and (A.4) results in 

 

   )()( 1,1,00, Qfccczf jjjjjj +−+≤ ++  

    )(1,1,,00, Qfcccc jjjjjjj +−++≤ ++  

     (by the triangular inequality) 

    = )(2 ,0 Qfc jj +  

 

This seemingly simple lemma constitutes a key element to the proof of the following theorem.  

 

THEOREM 1. For each customer j, there exists a quantity hj, such that the optimal decision, after serving 

node j, is to continue to node j + 1 if z ≥ hj, or return to the depot if z < hj. 

 

Proof. To prove this theorem, we first show by induction that for all z ∈ Sj, fj(z) is a non-increasing function. 

That is, for z1,z2 ∈ Sj and z1 < z2, 

fj(z1) ≥ fj(z2) 

 

At terminal stage n, fn(z) = cn0 is independent of z. Hence fn(z) is monotonically non-increasing with respect 

to z ∈ Sn. We will now prove that, if fj+1(z) is monotonically non-increasing with respect to z ∈ Sj+1, then fj(z) 

is also monotonically non-increasing with respect to z ∈ Sj. 

Let Hj(z) and H’j(z) denote the values of the upper and lower terms inside the minimisation in Eq. (A.1). 

Then for z1,z2 ∈ Sj and z1 < z2≤ Q, Hj(z1) – Hj(z2), after some simplification, can be written as 

 

Hj(z1) – Hj(z2) = 
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Because fj+1(z) is monotonically non-increasing, the first and the third summation in the above equation is 

positive. Hence, 

 

Hj(z1) – Hj(z2) ≥ ∑
≤<

++++ −−−+++
21:

,121110,1 )]()(2[

zzk

kj
k

j
k

jj
k

pzfQzfcb

ξ

ξξ  

 

Using LEMMA 1 and the monotonicity of fj+1(z), it is now easy to show that Hj(z1) – Hj(z2) ≥ 0. Hence Hj(z) 

is a monotonically non-increasing function and fj(z) is the minimum of a non-increasing function Hj(z) and a 

constant function H’j(z), hence it is monotonically non-increasing with respect to z ∈ Sj. Moreover there 

exists hj, such that the optimal decision, after serving node j, is to continue to node j+1 if z ≥ hj, or return to 

the depot if z < hj. Note that hj = 0 if Hj(z)≤ H’j(z) for all z ∈ Sj, and hj = Q if H’j(z)≤ Hj(z) ) for all z ∈ Sj. 

  

The main implication of Theorem 1 is that, practically, it is easy to implement because it provides a simple 

policy for the driver to follow. Second, this result can be used in the efficient algorithmic implementation of 

the dynamic programming recursion. In particular, at each stage of the dynamic programming, the algorithm 

computes H’j(z). Then it computes Hj(z) in descending order of z until it exceeds the value of H’j(z). The last 

value of z for which Hj(z)≤ H’j(z) is the threshold hj for this customer. If z is higher than the threshold the 

vehicle can proceed to the next customer site, otherwise it will return to the depot.  
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Appendix B 
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B.1 The Multiple product compartmentalized case formulation – 3 products 

  

We assume that the vehicle is divided into 3 sections and each section is suitable for one type of product 

only. Using the notation of Section 6.2.1, the dynamic programming formulation of the 3-product problem is 

given below: 

 

min),,( 321 =jjjj zzzf  
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As it can be clearly observed, the first part of the minimization equation consists of eight distinct terms (the 

eight rows after the cj,j+1 row). 
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Figure B.1. The solution space per customer point for three products. 

 

The first of these terms represents the cost that is incurred if the vehicle proceeds to the next customer 

directly and the stock of all three items on board is sufficient to fully satisfy the demand of the next customer 

(Area A shown in red in Figure B.1). The next three terms represent the cases in which the stock of one 

product (z1, z2, or z3) is not sufficient to satisfy the demand of the next customer, while the stock of the other 

two products is.  

 

The next three terms represent the cases in which the stock of only one product (z1, z2, or z3) is sufficient to 

satisfy the demand of the next customer, while the stock of the other two products is not. The eighth term 

represents the cost that is incurred if the vehicle proceeds to the next customer directly and the stock on 

board of all products is not sufficient to fully satisfy the demand of the next customer.  

 

The second part of the equation represents the cost that is incurred if the vehicle does not go to the next 

customer directly, but rather first visits the Depot, refills its stock of all products, and then visits the next 

customer in the sequence.  

 

z1 

z2 

z3 
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Appendix C 
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C.1 Demand Distribution for the Multiple Product Delivery: Compartmentalized Load 

 

For product 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

For product 2  

 
      Demand 

 

 

 

 

Customer 

 

0 1 2 3 4 5 

1 0,01 0,1 0,1 0,7 0,08 0,01 

2 0,01 0,2 0,6 0,1 0,08 0,01 

3 0,01 0,03 0,05 0,2 0,7 0,01 

4 0,01 0,8 0,1 0,05 0,03 0,01 

5 0,01 0,08 0,1 0,2 0,6 0,01 

 

 

 

 Vehicle Capacity = (5,5) 

 

      Demand 

 

 

 

 

Customer 

 

0 1 2 3 4 5 

1 0,01 0,7 0,1 0,1 0,08 0,01 

2 0,01 0,6 0,2 0,1 0,08 0,01 

3 0,01 0,7 0,2 0,05 0,03 0,01 

4 0,01 0,5 0,2 0,2 0,08 0,01 

5 0,01 0,2 0,6 0,1 0,08 0,01 
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Appendix D 
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D.1 Demand Distribution for the Multiple Product Delivery: Unified Load 

 

 

 
Demand 

for 

Product 1 

Demand 

for 

Product 2 Customer 1 Customer 2 Customer 3 Customer 4 Customer 5 

10 0 0,001 0,001 0,001 0,001 0,001 

9 1 0,001 0,001 0,001 0,001 0,001 

9 0 0,001 0,001 0,001 0,001 0,001 

8 2 0,001 0,001 0,001 0,001 0,001 

8 1 0,001 0,001 0,001 0,001 0,001 

8 0 0,001 0,001 0,001 0,001 0,001 

7 3 0,001 0,001 0,001 0,001 0,001 

7 2 0,001 0,001 0,001 0,001 0,001 

7 1 0,001 0,001 0,001 0,001 0,001 

7 0 0,001 0,001 0,001 0,001 0,001 

6 4 0,001 0,001 0,001 0,001 0,001 

6 3 0,001 0,001 0,001 0,001 0,001 

6 2 0,001 0,001 0,001 0,001 0,001 

6 1 0,001 0,001 0,001 0,001 0,001 

6 0 0,001 0,001 0,001 0,001 0,001 

5 5 0,001 0,001 0,001 0,001 0,001 

5 4 0,001 0,001 0,001 0,001 0,001 

5 3 0,001 0,001 0,001 0,001 0,001 

5 2 0,001 0,001 0,001 0,001 0,001 

5 1 0,001 0,001 0,001 0,001 0,001 

5 0 0,001 0,001 0,001 0,001 0,001 

4 6 0,001 0,001 0,001 0,001 0,001 

4 5 0,001 0,001 0,001 0,001 0,001 

4 4 0,001 0,001 0,001 0,001 0,001 

4 3 0,001 0,001 0,001 0,001 0,001 

4 2 0,001 0,001 0,001 0,001 0,001 

4 1 0,001 0,001 0,001 0,001 0,001 

4 0 0,001 0,001 0,001 0,001 0,001 

3 7 0,001 0,001 0,001 0,001 0,001 

3 6 0,001 0,001 0,001 0,001 0,001 

3 5 0,001 0,001 0,001 0,001 0,001 

3 4 0,001 0,001 0,001 0,001 0,001 

3 3 0,001 0,001 0,001 0,001 0,001 

3 2 0,001 0,001 0,001 0,001 0,001 

3 1 0,001 0,001 0,001 0,1 0,001 

3 0 0,001 0,001 0,001 0,001 0,001 

2 8 0,001 0,001 0,001 0,001 0,001 

2 7 0,001 0,001 0,001 0,001 0,001 

2 6 0,001 0,001 0,001 0,001 0,001 

2 5 0,001 0,001 0,001 0,001 0,001 
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2 4 0,001 0,001 0,001 0,001 0,6 

2 3 0,001 0,001 0,2 0,001 0,001 

2 2 0,2 0,1 0,001 0,2 0,01 

2 1 0,01 0,21 0,01 0,01 0,01 

2 0 0,001 0,001 0,001 0,001 0,001 

1 9 0,001 0,001 0,001 0,001 0,001 

1 8 0,001 0,001 0,001 0,001 0,001 

1 7 0,001 0,001 0,001 0,001 0,001 

1 6 0,001 0,001 0,001 0,001 0,001 

1 5 0,001 0,001 0,001 0,001 0,001 

1 4 0,001 0,001 0,7 0,002 0,001 

1 3 0,7 0,01 0,01 0,01 0,2 

1 2 0,01 0,6 0,01 0,01 0,101 

1 1 0,01 0,01 0,01 0,6 0,01 

1 0 0,01 0,01 0,001 0,01 0,01 

0 10 0,001 0,001 0,001 0,001 0,001 

0 9 0,001 0,001 0,001 0,001 0,001 

0 8 0,001 0,001 0,001 0,001 0,001 

0 7 0,001 0,001 0,001 0,001 0,001 

0 6 0,001 0,001 0,001 0,001 0,001 

0 5 0,001 0,001 0,001 0,001 0,001 

0 4 0,001 0,001 0,001 0,001 0,001 

0 3 0,001 0,001 0,001 0,001 0,001 

0 2 0,001 0,001 0,001 0,001 0,001 

0 1 0,001 0,001 0,001 0,001 0,001 

0 0 0,001 0,001 0,001 0,001 0,001 

 

 

Vehicle Capacity = 10 
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Appendix E 
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E.1 Demand Distribution for the Pickup and Delivery example 

 

For product to be delivered 

 
      Demand 

 

 

 

 

Customer 

 

0 1 2 3 4 5 

1 0,01 0,1 0,1 0,7 0,08 0,01 

2 0,01 0,2 0,6 0,1 0,08 0,01 

3 0,01 0,03 0,05 0,2 0,7 0,01 

4 0,01 0,8 0,1 0,05 0,03 0,01 

5 0,01 0,08 0,1 0,2 0,6 0,01 

 

 

For product to be picked up 

 
      Demand 

 

 

 

 

Customer 

 

0 1 2 3 4 5 

1 0,01 0,7 0,1 0,1 0,08 0,01 

2 0,01 0,6 0,2 0,1 0,08 0,01 

3 0,01 0,7 0,2 0,05 0,03 0,01 

4 0,01 0,5 0,2 0,2 0,08 0,01 

5 0,01 0,2 0,6 0,1 0,08 0,01 

 

 

 

 Vehicle Capacity = 5 
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Appendix F 
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F.1 The Characteristics of Equations 6.10 and 7.1 

 

In this Appendix we will show that Equations 6.10 and 7.1 define a proper dynamic programming recursion. 

In particular we will show that the way these equations have been written is a compact form of equivalent 

but more extended dynamic programming equations. This will be done by focusing on Equation 6.10. The 

discussion is completely analogous for Equation 7.1. Taking part (a) of Equation 6.10 we have: 
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The equivalence of sums (1) and (2) is true since all terms in sum (1) are linear with positive known 

coefficients, which are the joint probability mass functions ),( 211 kkp j+ . Thus the minimum of each linear 

term in sum (2) is equal to the corresponding term of sum (1), in which the minimum is internal to the term.  

 

The equivalence of sums (2) and (3) is true since each sum is linear and each term within sum (2) is positive. 

Thus the global minimum of sum (3) is equal to the addition of the local minima in sum (2).  

 

Similarly, for the second part of Equation (6.10) we have: 
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The equivalence of sums (4) and (5) is true since all terms in sum (4) are linear with positive known 

coefficients, which are the joint probability mass functions ),( 211 kkp j+ . Thus the minimum of each linear 

term in sum (5) is equal to the corresponding term of sum (4), in which the minimum is internal to the term.  

 

The equivalence of sums (5) and (6) is true since each sum is linear and each term within sum (5) is positive. 

Thus the global minimum of sum (6) is equal to the addition of the local minima in sum (5).  

 

Bringing part (a) and (b) of Equation 6.10 back together using sums (3) and (6) we obtain: 
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The latter equation is a proper dynamic programming recursion.  

 


